
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

IoT Device Virtualization for Efficient Resource
Utilization in Smart City IoT Platform

Keigo Ogawa, Kenji Kanai, Kenichi Nakamura, Hidehiro Kanemitsu, Jiro Katto and Hidenori Nakazato
Waseda University, Waseda Research Institute for Science and Engineering

3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-0072, Japan
{k_ogawa, kanai, katto}@katto.comm.waseda.ac.jp

Abstract—To develop and interoperate smart city applications
efficiently, smart city IoT platforms require efficient handling of
various types of sensor devices, networking and computing
resources, and different domain applications. To address this fact,
in this paper, we introduce an IoT device virtualization that
enables efficient utilization of computing resources. The proposal
applies a micro-service sharing and dynamic resource scaling. In
the performance validations, we implement an early prototype
using Docker, Kubernetes, and Apache Kafka. Through the
preliminary experiment, we confirm that the proposal can
improve the application processing time by appropriately sharing
and scaling micro services.

Keywords—IoT platform; smart city; micro service;
virtualization; resource management

I. INTRODUCTION
The Internet of Things (IoT) has become popular in

academic and industry areas owing to evolutions of cloud
computing and sensor devices. For IoT use cases, smart cities
are one of the suitable candidates. Currently, smart city (or IoT)
application developers individually install various sensor
devices and arrange networking and computing resources to
collect and analyze the sensor data. This results in excessive
costs for smart city application providers and smart city owners.

To efficiently develop and interoperate smart city
applications, recently, standardizations of IoT platforms, such as
oneM2M [1] and FIWARE [2], are ongoing. The IoT platform
(or IoT) requires an efficient handling of various types of sensor
devices, networking and computing resources, and different
domain applications, such as energy management,
transportation management, and healthcare [3].

To address this requirement, the authors of this paper
propose a research project named “Fed4IoT” [4], which is an
acronym for federation of IoT and cloud infrastructures, to
provide scalable and interoperable smart city applications. This
project is a collaboration between EU and JP, and its objective
is to deploy the proposed Fed4IoT platform to actual EU and JP
smart cities and to improve the quality of smart city applications,
such as city surveillance. Based on this motivation, the project
primarily proposes two key technologies: IoT device
virtualization and context-information sharing.

In this paper, to improve the processing (or response) time
for smart city applications, we introduce the IoT device
virtualization (one of the key technologies in Fed4IoT) that
enables efficient utilization of computing resources. To validate
the performance, we implement a prototype of the proposal
using Docker and Kubernetes and confirm the advantage of the
proposal through preliminary evaluations.

II. RELATED WORK
Several researchers and application providers consider the

utilization of edge/fog computing to provide IoT (or smart city)
applications [5-7]. Because computing resources will be
installed at physical proximity to end users, the edge/fog
computing can provide low-latency and location-aware
processing. Pre-processing and caching in the edge is one of
realistic services of edge/fog computing. In addition, to provide
further efficient processing, cooperation between edge/fog and
cloud is mandatory [8].

To manage the various requirements of networking and
computing resources, virtualization techniques, such as
software-defined network (SDN), network function
virtualization (NFV), and container and virtual machines (VM)
are indispensable. In hardware virtualization, numerous
researchers are attempting container-based and VM-based
virtualizations, where Docker and OpenStack are typical
examples. In particular, the container-based virtualization
(Docker) can generate a container that includes application-
specific environments such as libraries, and such a container
does not affect other containers (i.e., isolation). In addition, it is
well-known that the container has less overhead compared with
the VM-based virtualization. This means that the container can
scale a configuration of the virtualized hardware considerably
easily and flexibly. Kubernetes is a well-known open-source
container orchestration software to manage Docker containers.
Recently, several researchers have developed IoT applications
using Docker [9-12].

Based on these technologies, to improve the application
response time (i.e., to reduce processing time), in this paper, we
propose an IoT device virtualization technique that enables
efficient utilization of computing resources using Docker and
Kubernetes.

III. IOT DEVICE VIRTUALIZATION

A. Concept
A concept of IoT device virtualization is illustrated in Fig. 1.

The primary objective of IoT device virtualization is to share
IoT devices and service functions (or micro services) among
different smart city applications. Although this concept is
similar to FogFlow [13], FogFlow does not consider a device
sharing among different applications and dynamic resource
scaling. Unlike FogFlow, the proposal considers the micro-
service sharing and dynamic resource scaling to improve the
computing resource utilization and the application quality. As
shown in the figure, the proposal adds two nodes (gateway nodes
and function nodes) between the devices and applications.
Gateway nodes play a role of pooling the raw data generated via
sensors, and function nodes perform a (pre-)processing of the
raw data, such as averaging sensor values or image processing

of a surveillance camera. As the platform opens common APIs,
such as REST, to access the function nodes, using the APIs, the
application providers are no longer concerned with connecting
to the device itself, and the function nodes broker collecting and
processing the sensor data. This fact enables the efficient sharing
of IoT devices among different applications. In addition,
applying the service (or network) function virtualization
technique to the function nodes, these nodes can provide
considerably flexible and scalable micro services to application
providers. The detailed explanations are provided in the next
subsection.

Fig. 1. Concept image of IoT device virtualization

B. Micro-service deployment, scaling, and sharing
A concept image of micro-service deployment, scaling, and

sharing is illustrated in Fig. 2. As shown in the figure, the
functions represent the micro services, such as obtaining the
sensor data and performing human detection.

Fig. 2. Concept image of micro-service deployment, scaling, and sharing

First, in the micro-service deployment, to use the computing
resources efficiently, each micro service (or function) should be
deployed to the appropriate computing resource, such as a local
device, edge/fog, and cloud. In addition, a deployment algorithm
or policy is referenced from FogFlow and the previous research
efforts on the resource allocation and optimization.

Second, in the micro-service scaling, to improve the resource
utilization and application quality, the micro service should be
scaled dynamically. This is because the micro services often run
under dynamic changing environments and different application
requirements. In addition, the micro services also have different
resource requirements (data volume and processing load). Thus,
the micro-service scaling should be controlled according to the

application’s daily (or historical) behaviors. We assume that
such application behaviors can be predicted by monitoring the
resource utilization and applying machine learning; however,
this will be part of our future work.

Third, in the micro-service sharing, to further improve
resource utilization and sharing of IoT devices, the micro-
services should be shared among different (domain) applications.
Because the micro services are deployed by the container, the
micro services can be easily shared. In addition, because the
container-based micro services are isolated, the micro services
are easily and safely migrated to different computing nodes
(local, edge/fog, and cloud). Such scheduling can also be
optimized by monitoring the historical resource usages and
applying machine learning as similar to the micro-service
scaling.

C. Communication protocol
To exchange raw sensor data and intermediate results

between the function nodes and the IoT devices, we apply a
publish/subscribe (pub/sub)-based messaging model, such as
Apache Kafka and MQTT as shown in Fig. 3. Because the
function nodes will be shared or chained to each other, the
communication paths will be changed dynamically. In the
pub/sub-based messaging model, the communication paths can
be easily managed by topics. When the function nodes are
deployed, a broker node (or an orchestration node) specifies the
basic publish topics and subscribe topics. By chaining the
function nodes, the topic is named via simply lining the function
name and separating the specific character:
“http://DeviceID/FunctionA/FunctionB.” This naming scheme
can be quite similar to a naming scheme of Content Centric
Networking (CCN) [14]; thus, we assume that CCN or related
networking technologies can also be one of the suitable
candidates with regard to the communication protocol.

Fig. 3. Concept image of Pub/Sub-based function chaining

IV. PERFORMANCE EVALUATIONS

A. Experimental environment
To evaluate the concept of our proposal, we implement an

early prototype using Docker, Kubernetes, and Apache Kafka.
Using Docker, we implement the micro services, such as
capturing images from cameras and performing object/human
detection. Using Kubernetes, we deploy and scale the resources
for the container-based micro services. Using Apache Kafka, we
establish the connections between IoT devices and the function
nodes and control the micro-service chaining. The detailed
experimental environment is illustrated in Fig. 3.

App 1

Local device Edge server

Function 1 Function 2 Function 3Function 1' Function 3'

Cloud server Local device

Function 1 Function 2 Function 3 Function 1' Function 2 Function 3'

App 2

: Deploy
: Application flow

Shared function

 Subscribe topic
 Execute function
 Add information
 Publish to topic

Previous
function

Function

Pub Next
functionPubSub

To
pi
c

Sub

To
pi
c

Broker
Intermediate

Data
 pubish to: XXX,
 timestamp: XX:XX:XX,
 data:

Meta data

Actual data

Fig. 4. Experimental environment of our implementation

As shown in the figure, we employ one desktop PC as a
Kubernetes master (CPU: Intel Core i7-4770T 2.50 GHz,
Memory: 16 GB), one cloud server as a Kubernetes node (CPU:
Intel Xeon E5-2650 v3 2.30 GHx, Memory: 220 GB), one edge
server as Kubernetes node (CPU: Intel Core i7-7700 3.60 GHz,
Memory: 32 GB, GPU: NVIDIA GeForce GTX 1080Ti), two
Raspberry Pi 3 B+ with USB cameras as IoT devices (camera
A: resolution is 640×480, camera B: resolution is 1280×720).
These nodes are placed in the laboratory, and the Kubernetes
master is connected to the edge server via the Gigabit ethernet
cable. In addition, the Kubernetes master creates a virtual
network for Kubernetes nodes and manages (and scales) the
Docker-based micro services. Furthermore, we employ
HoloLens as a user device. HoloLens has an embedded camera
and can transmit/receive image data. It should be noted that
every IoT device node (Raspberry Pies and HoloLens) is
connected to the Apache Kafka broker via the IEEE 802.11ac
Wi-Fi network.

B. Smart city application
In the performance evaluations, we assume an image

processing as a smart city application and employ two
applications. In each application, micro services are
containerized using Docker in advance.

1) Indoor surveillance using two fixed cameras
The first application is an indoor surveillance using two

fixed cameras. This application uses two USB cameras A and B
that have different video resolutions (as introduced in the
previous subsection) and comprises of six steps as follows:

a) Obtain one image from camera A and transmit the image for
every 350 ms.
b) Conduct object detection from the image of camera A, and
send the detection result.
c) If a human is detected, send a message for activating camera
B (i.e., notification of human existence)
d) After step c), wait for 2 s, obtain one image from camera B
and transmit the image.
e) Perform human detection from the image of camera B and
send the detection result.

f) Integrate and transmit the results to the cloud server.
It should be noted that the image is continuously generated

from camera A and transmitted to the micro service that has a
capability of object detection every 350 ms.

2) Object notification using HoloLens
The second application is object notification using one

mobile camera, HoloLens, and comprises of four steps as
follows:

a) Obtain an image from HoloLens and transmit the image
every 1 s.
b) Conduct object detection from the image of HoloLens and
then send back the results to HoloLens.
c) If objects are detected, then send back the results to
HoloLens. (i.e., object notification)
d) Display the object information based on the received results.

It should be noted that, as differed from the previous
application, the image is continuously generated from HoloLens
and transmitted to the micro service that has a capability of
object detection in every 1 s.

In these applications, the steps (1.a) and (1.d) implement two
Docker containers that have a similar configuration but are
deployed in different nodes. Further, the steps (1.b), (1.e), and
(2.b) are implemented to the same Docker container, and this
means that the same Docker container is shared among these
steps. As shown in Fig. 4, a sharing Docker container named
“Detect Object (provided by YOLOv3 [15])” is illustrated using
green color, and the Docker containers used in the first and
second applications are illustrated via blue and purple colors,
respectively.

C. Evaluation scenarios
In the evaluation, we validate the performance of dynamic

computing (CPU) resource scaling according to the application
behaviors. Because the two applications share the micro service
called “Detect Object”, and a processing time for “Detect Object”
significantly depends on allocated CPU resources and number
of running cameras, the Kubernetes master will primarily scale
this Docker container. In advance, we evaluate the performance
of the processing time under different CPU resources and
number of cameras, and confirm the results as shown in Table I.
Experimental time is 300 s and the processing time demonstrates
the average values. It should be noted that 1900 millicores
represent 190% CPU usage. Based on the observation, we set an
evaluation scenario as shown in Table II. We set a scenario
where the CPU resource is always allocated 3000 millicores for
comparison.
Table I: Average processing time under different cameras and CPU resources

Number of cameras CPU (millicores) Proc. time (s)
Camera A 1900 1.01
Camera A + B 4500 1.18
Camera A + B + Hololens 5500 1.43

Table II: Evaluation scenario
Time (min) CPU (millicores) Number of cameras
0 – 1 2000 Camera A
1 – 2 3000 Camera A + HoloLens
2 – 3 5000 Camera A + B
3 – 4 7000 Camera A + B + HoloLens

Capture
image

Detect Object
Notify
human
existence

Capture
image

Store human and
object information

Cloud server

Capture
image

Notify
object

information

Display object
information

Edge server

Raspberry Pi Raspberry Pi Hololens

: Application flow

Function

Device Name

Kafka broker

WiFi

Kubernetes
Master

Desktop PC

D. Results
Fig. 5 demonstrates the result of processing time as we set

CPU resources always to 3000 millicores (i.e., comparison case:
no efficient dynamic resource scaling case). As shown in the
figure, the processing time is increased according to the increase
in the number of devices. This is because the function resource
is insufficient against the application requirements (as shown in
Table I), and the images waiting for processing will be queued.
From the viewpoint of resource provisioning, the resource is
allocated excessively (i.e., over provision) during the first 120 s,
and vice versa (i.e., under provision) during the next 120 s.

Fig. 5. Results of processing time with a constant resource allocation
(comparison)

Further, Fig. 6 demonstrates the results of processing time in
our proposal. From the figure, the results indicate that the
processing time can be reduced as the CPU resource can be
allocated appropriately. Thus, the results conclude that the
proposal that enables utilization of efficient computing resource
will potentially improve application quality.

Fig. 6. Results of processing time with dynamic resource scaling (proposal)

V. CONCLUSIONS AND FUTURE WORK
In this paper, we introduced an IoT device virtualization that

efficiently utilizes computing resources to improve processing
time for smart city applications. In the IoT device virtualization,
the IoT devices and service functions (or micro services) are
shared among different smart city applications. To improve the
resource utilization and application quality, the proposal will

scale the resources (or configurations) of micro services
dynamically according to the application requirements and
behaviors (e.g., historical resource usage). In the performance
validations, we implemented an early prototype using Docker,
Kubernetes, and Apache Kafka. Through the preliminary
experiment, we confirmed that the proposal can potentially
improve the application processing time by sharing and scaling
micro services appropriately. In the future, we will evaluate the
proposed performance in relatively large-scale environments.
We will implement more realistic smart city applications and
deploy the proposal to actual smart cities. In addition, we will
propose prediction of the transition of resource utilization by
applying machine learning.

ACKNOWLEDGMENTS
This work was supported by the EU-JAPAN initiative by the EC
Horizon 2020 Work Programme (2018-2020) Grant Agreement
No. 814918 and Ministry of Internal Affairs and
Communications “Federating IoT and cloud infrastructures to
provide scalable and interoperable Smart Cities applications, by
introducing novel IoT virtualization technologies (Fed4IoT)”.

REFERENCES
[1] oneM2M [online]: http://www.onem2m.org/
[2] FIWARE [online]: https://www.fiware.org/
[3] A. Banafa, “Three Major Challenges Facing IoT”, IEEE IoT Newsletter,

Mar. 2017.
[4] Fed4IoT [online]: https://fed4iot.org/
[5] F. C. Delicato, P. F. Pires, and T. Batista, “The Resource Management

Challenge in IoT”, Resource Management for Internet of Things, Springer
Briefs in Computer Science, Springer, Cham, 2017.

[6] J. Pan and J. McElhannon, “Future Edge Cloud and Edge Computing for
Internet of Things Applications”, IEEE Internet of Things Journal, vol. 5,
no. 1, pp. 439–449, Feb. 2018.

[7] C. Christian, P. Andrei, W. Gary, and G. Siobhan, “The Right Service at
the Right Place: A Service Model for Smart Cities”, IEEE Percom, pp. 1–
10, 2018, Mar. 2018.

[8] C. Perena, Y. Qin, J. C. Estrella, S. R.-Marganiec, and A. V. Vasilakos,
“Fog Computing for Sustainable Smart Cities: A Survey”, ACM
Computing Surveys, vol. 50, issue 3, no. 32, Oct. 2017.

[9] M. In, X. Wan, L. Xiao, Y. Chen, M. Xia, D. Wu, and H. Dai, “Learning-
Based Privacy-Aware Offloading for Healthcare IoT with Energy
Harvesting”, IEEE Internet of Things Journal, Oct. 2018.

[10] K. Khanda, D. Salikhov, K. Gusmanov, M. Mazzara, and N. Mavridis,
“Microservice-based IoT for Smart Buildings”, International Conference
on Advanced Information Networking and Applications Workshops, pp.
302–308, Taipei, 2017.

[11] R. Morabito, R. Petrolo, V. Loscri, and N. Mitton, “Enabling a
lightweight Edge Gateway-as-a-Service for the Internet of Things”, NOF
2016-7th International Conference on Network of the Future, Nov. 2016.

[12] J. Rufino, M. Alam, J. Ferreira, A. Rehman, and K. F. Tsang,
“Orchestration of Containerized Microservices for IoT using Docker”,
2017 IEEE International Conference on Industrial Technology, pp. 1532–
1536, Toronto, 2017.

[13] B. Cheng, G. Solmaz, F. Cirillo, E. Kovacs, K. Terasawa, and A.
Kitazawa, “FogFlow: Easy Programming of IoT Services Over Cloud and
Edges for Smart Cities,” IEEE Internet of Things Jounal, vol. 5, Issue 2,
pp. 696–707, Apr. 2018.

[14] V. Jacobson, D. K. Smetters, J. D. Thornton, M. Plass,	 N. Briggs, and
R. Braynard, “Networking named content”, Commun. ACM, 55, 1, pp.
117–124, 2012.

[15] YOLO: Real-Time Object Detection [online]:
https://pjreddie.com/darknet/yolo/

0
1000
2000
3000
4000
5000
6000
7000
8000

0

10

20

30

40

50

60

0 60 120 180 240

C
PU

 re
so

ur
ce

 (m
ill

ic
or

es
)

Pr
oc

es
sin

g
tim

e
(s

)

Elapsed time (s)

Processing time CPU resources

Excessive resource Insufficient resource

A A +
Hololens

A + B A + B +
Hololens

(Over provision) (Under provision)

0
1000
2000
3000
4000
5000
6000
7000
8000

0

0.5

1

1.5

2

2.5

0 60 120 180 240

C
PU

 re
so

ur
ce

s (
m

ill
ic

or
es

)

Pr
oc

es
sin

g
tim

e
(s

)

Elapsed time (s)

Processing time CPU resources

A
A +

Hololens A + B
A + B +
Hololens

