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Abstract—To develop and interoperate smart city applications 
efficiently, smart city IoT platforms require efficient handling of 
various types of sensor devices, networking and computing 
resources, and different domain applications. To address this fact, 
in this paper, we introduce an IoT device virtualization that 
enables efficient utilization of computing resources. The proposal 
applies a micro-service sharing and dynamic resource scaling. In 
the performance validations, we implement an early prototype 
using Docker, Kubernetes, and Apache Kafka. Through the 
preliminary experiment, we confirm that the proposal can 
improve the application processing time by appropriately sharing 
and scaling micro services. 
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I. INTRODUCTION 
The Internet of Things (IoT) has become popular in 

academic and industry areas owing to evolutions of cloud 
computing and sensor devices. For IoT use cases, smart cities 
are one of the suitable candidates. Currently, smart city (or IoT) 
application developers individually install various sensor 
devices and arrange networking and computing resources to 
collect and analyze the sensor data. This results in excessive 
costs for smart city application providers and smart city owners. 

To efficiently develop and interoperate smart city 
applications, recently, standardizations of IoT platforms, such as 
oneM2M [1] and FIWARE [2], are ongoing. The IoT platform 
(or IoT) requires an efficient handling of various types of sensor 
devices, networking and computing resources, and different 
domain applications, such as energy management, 
transportation management, and healthcare [3]. 

To address this requirement, the authors of this paper 
propose a research project named “Fed4IoT” [4], which is an 
acronym for federation of IoT and cloud infrastructures, to 
provide scalable and interoperable smart city applications. This 
project is a collaboration between EU and JP, and its objective 
is to deploy the proposed Fed4IoT platform to actual EU and JP 
smart cities and to improve the quality of smart city applications, 
such as city surveillance. Based on this motivation, the project 
primarily proposes two key technologies: IoT device 
virtualization and context-information sharing. 

In this paper, to improve the processing (or response) time 
for smart city applications, we introduce the IoT device 
virtualization (one of the key technologies in Fed4IoT) that 
enables efficient utilization of computing resources. To validate 
the performance, we implement a prototype of the proposal 
using Docker and Kubernetes and confirm the advantage of the 
proposal through preliminary evaluations. 

II. RELATED WORK 
Several researchers and application providers consider the 

utilization of edge/fog computing to provide IoT (or smart city) 
applications [5-7]. Because computing resources will be 
installed at physical proximity to end users, the edge/fog 
computing can provide low-latency and location-aware 
processing. Pre-processing and caching in the edge is one of 
realistic services of edge/fog computing. In addition, to provide 
further efficient processing, cooperation between edge/fog and 
cloud is mandatory [8]. 

To manage the various requirements of networking and 
computing resources, virtualization techniques, such as 
software-defined network (SDN), network function 
virtualization (NFV), and container and virtual machines (VM) 
are indispensable. In hardware virtualization, numerous 
researchers are attempting container-based and VM-based 
virtualizations, where Docker and OpenStack are typical 
examples. In particular, the container-based virtualization 
(Docker) can generate a container that includes application-
specific environments such as libraries, and such a container 
does not affect other containers (i.e., isolation). In addition, it is 
well-known that the container has less overhead compared with 
the VM-based virtualization. This means that the container can 
scale a configuration of the virtualized hardware considerably 
easily and flexibly. Kubernetes is a well-known open-source 
container orchestration software to manage Docker containers. 
Recently, several researchers have developed IoT applications 
using Docker [9-12]. 

Based on these technologies, to improve the application 
response time (i.e., to reduce processing time), in this paper, we 
propose an IoT device virtualization technique that enables 
efficient utilization of computing resources using Docker and 
Kubernetes. 

III. IOT DEVICE VIRTUALIZATION 

A. Concept 
A concept of IoT device virtualization is illustrated in Fig. 1. 

The primary objective of IoT device virtualization is to share 
IoT devices and service functions (or micro services) among 
different smart city applications. Although this concept is 
similar to FogFlow [13], FogFlow does not consider a device 
sharing among different applications and dynamic resource 
scaling. Unlike FogFlow, the proposal considers the micro-
service sharing and dynamic resource scaling to improve the 
computing resource utilization and the application quality. As 
shown in the figure, the proposal adds two nodes (gateway nodes 
and function nodes) between the devices and applications. 
Gateway nodes play a role of pooling the raw data generated via 
sensors, and function nodes perform a (pre-)processing of the 
raw data, such as averaging sensor values or image processing 



of a surveillance camera. As the platform opens common APIs, 
such as REST, to access the function nodes, using the APIs, the 
application providers are no longer concerned with connecting 
to the device itself, and the function nodes broker collecting and 
processing the sensor data. This fact enables the efficient sharing 
of IoT devices among different applications. In addition, 
applying the service (or network) function virtualization 
technique to the function nodes, these nodes can provide 
considerably flexible and scalable micro services to application 
providers. The detailed explanations are provided in the next 
subsection. 

 

Fig. 1. Concept image of IoT device virtualization 

B. Micro-service deployment, scaling, and sharing 
A concept image of micro-service deployment, scaling, and 

sharing is illustrated in Fig. 2. As shown in the figure, the 
functions represent the micro services, such as obtaining the 
sensor data and performing human detection. 

 

Fig. 2. Concept image of micro-service deployment, scaling, and sharing 

First, in the micro-service deployment, to use the computing 
resources efficiently, each micro service (or function) should be 
deployed to the appropriate computing resource, such as a local 
device, edge/fog, and cloud. In addition, a deployment algorithm 
or policy is referenced from  FogFlow and the previous research 
efforts on the resource allocation and optimization. 

Second, in the micro-service scaling, to improve the resource 
utilization and application quality, the micro service should be 
scaled dynamically. This is because the micro services often run 
under dynamic changing environments and different application 
requirements. In addition, the micro services also have different 
resource requirements (data volume and processing load). Thus, 
the micro-service scaling should be controlled according to the 

application’s daily (or historical) behaviors. We assume that 
such application behaviors can be predicted by monitoring the 
resource utilization and applying machine learning; however, 
this will be part of our future work. 

Third, in the micro-service sharing, to further improve 
resource utilization and sharing of IoT devices, the micro-
services should be shared among different (domain) applications. 
Because the micro services are deployed by the container, the 
micro services can be easily shared. In addition, because the 
container-based micro services are isolated, the micro services 
are easily and safely migrated to different computing nodes 
(local, edge/fog, and cloud). Such scheduling can also be 
optimized by monitoring the historical resource usages and 
applying machine learning as similar to the micro-service 
scaling. 

C. Communication protocol 
To exchange raw sensor data and intermediate results 

between the function nodes and the IoT devices, we apply a 
publish/subscribe (pub/sub)-based messaging model, such as 
Apache Kafka and MQTT as shown in Fig. 3. Because the 
function nodes will be shared or chained to each other, the 
communication paths will be changed dynamically. In the 
pub/sub-based messaging model, the communication paths can 
be easily managed by topics. When the function nodes are 
deployed, a broker node (or an orchestration node) specifies the 
basic publish topics and subscribe topics. By chaining the 
function nodes, the topic is named via simply lining the function 
name and separating the specific character: 
“http://DeviceID/FunctionA/FunctionB.” This naming scheme 
can be quite similar to a naming scheme of Content Centric 
Networking (CCN) [14]; thus, we assume that CCN or related 
networking technologies can also be one of the suitable 
candidates with regard to the communication protocol. 

 

Fig. 3. Concept image of Pub/Sub-based function chaining 

IV. PERFORMANCE EVALUATIONS 

A. Experimental environment 
To evaluate the concept of our proposal, we implement an 

early prototype using Docker, Kubernetes, and Apache Kafka. 
Using Docker, we implement the micro services, such as 
capturing images from cameras and performing object/human 
detection. Using Kubernetes, we deploy and scale the resources 
for the container-based micro services. Using Apache Kafka, we 
establish the connections between IoT devices and the function 
nodes and control the micro-service chaining. The detailed 
experimental environment is illustrated in Fig. 3.  
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Fig. 4. Experimental environment of our implementation 

As shown in the figure, we employ one desktop PC as a 
Kubernetes master (CPU: Intel Core i7-4770T 2.50 GHz, 
Memory: 16 GB), one cloud server as a Kubernetes node (CPU: 
Intel Xeon E5-2650 v3 2.30 GHx, Memory: 220 GB), one edge 
server as Kubernetes node (CPU: Intel Core i7-7700 3.60 GHz, 
Memory: 32 GB, GPU: NVIDIA GeForce GTX 1080Ti), two 
Raspberry Pi 3 B+ with USB cameras as IoT devices (camera 
A: resolution is 640×480, camera B: resolution is 1280×720). 
These nodes are placed in the laboratory, and the Kubernetes 
master is connected to the edge server via the Gigabit ethernet 
cable. In addition, the Kubernetes master creates a virtual 
network for Kubernetes nodes and manages (and scales) the 
Docker-based micro services. Furthermore, we employ 
HoloLens as a user device. HoloLens has an embedded camera 
and can transmit/receive image data. It should be noted that 
every IoT device node (Raspberry Pies and HoloLens) is 
connected to the Apache Kafka broker via the IEEE 802.11ac 
Wi-Fi network. 

B. Smart city application 
In the performance evaluations, we assume an image 

processing as a smart city application and employ two 
applications. In each application, micro services are 
containerized using Docker in advance. 

1) Indoor surveillance using two fixed cameras 
The first application is an indoor surveillance using two 

fixed cameras. This application uses two USB cameras A and B 
that have different video resolutions (as introduced in the 
previous subsection) and comprises of six steps as follows: 

a) Obtain one image from camera A and transmit the image for 
every 350 ms. 
b) Conduct object detection from the image of camera A, and 
send the detection result. 
c) If a human is detected, send a message for activating camera 
B (i.e., notification of human existence) 
d) After step c), wait for 2 s, obtain one image from camera B 
and transmit the image. 
e) Perform human detection from the image of camera B and 
send the detection result. 

f) Integrate and transmit the results to the cloud server. 
It should be noted that the image is continuously generated 

from camera A and transmitted to the micro service that has a 
capability of object detection every 350 ms. 

2)  Object notification using HoloLens 
The second application is object notification using one 

mobile camera, HoloLens, and comprises of four steps as 
follows: 

a) Obtain an image from HoloLens and transmit the image 
every 1 s. 
b) Conduct object detection from the image of HoloLens and 
then send back the results to HoloLens. 
c) If objects are detected, then send back the results to 
HoloLens. (i.e., object notification) 
d) Display the object information based on the received results. 

It should be noted that, as differed from the previous 
application, the image is continuously generated from HoloLens 
and transmitted to the micro service that has a capability of 
object detection in every 1 s. 

In these applications, the steps (1.a) and (1.d) implement two 
Docker containers that have a similar configuration but are 
deployed in different nodes. Further, the steps (1.b), (1.e), and 
(2.b) are implemented to the same Docker container, and this 
means that the same Docker container is shared among these 
steps. As shown in Fig. 4, a sharing Docker container named 
“Detect Object (provided by YOLOv3 [15])” is illustrated using 
green color, and the Docker containers used in the first and 
second applications are illustrated via blue and purple colors, 
respectively. 

C. Evaluation scenarios 
In the evaluation, we validate the performance of dynamic 

computing (CPU) resource scaling according to the application 
behaviors. Because the two applications share the micro service 
called “Detect Object”, and a processing time for “Detect Object” 
significantly depends on allocated CPU resources and number 
of running cameras, the Kubernetes master will primarily scale 
this Docker container. In advance, we evaluate the performance 
of the processing time under different CPU resources and 
number of cameras, and confirm the results as shown in Table I. 
Experimental time is 300 s and the processing time demonstrates 
the average values. It should be noted that 1900 millicores 
represent 190% CPU usage. Based on the observation, we set an 
evaluation scenario as shown in Table II. We set a scenario 
where the CPU resource is always allocated 3000 millicores for 
comparison. 
Table I: Average processing time under different cameras and CPU resources 

Number of cameras CPU (millicores) Proc. time (s) 
Camera A 1900 1.01 
Camera A + B 4500 1.18 
Camera A + B + Hololens 5500 1.43 

Table II: Evaluation scenario 
Time (min) CPU (millicores) Number of cameras 
0 – 1 2000 Camera A 
1 – 2 3000 Camera A + HoloLens 
2 – 3 5000 Camera A + B 
3 – 4 7000 Camera A + B + HoloLens 
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D. Results 
Fig. 5 demonstrates the result of processing time as we set 

CPU resources always to 3000 millicores (i.e., comparison case: 
no efficient dynamic resource scaling case). As shown in the 
figure, the processing time is increased according to the increase 
in the number of devices. This is because the function resource 
is insufficient against the application requirements (as shown in 
Table I), and the images waiting for processing will be queued. 
From the viewpoint of resource provisioning, the resource is 
allocated excessively (i.e., over provision) during the first 120 s, 
and vice versa (i.e., under provision) during the next 120 s. 

 

Fig. 5. Results of processing time with a constant resource allocation 
(comparison) 

Further, Fig. 6 demonstrates the results of processing time in 
our proposal. From the figure, the results indicate that the 
processing time can be reduced as the CPU resource can be 
allocated appropriately. Thus, the results conclude that the 
proposal that enables utilization of efficient computing resource 
will potentially improve application quality. 

 

Fig. 6.  Results of processing time with dynamic resource scaling (proposal) 

V. CONCLUSIONS AND FUTURE WORK 
In this paper, we introduced an IoT device virtualization that 

efficiently utilizes computing resources to improve processing 
time for smart city applications. In the IoT device virtualization, 
the IoT devices and service functions (or micro services) are 
shared among different smart city applications. To improve the 
resource utilization and application quality, the proposal will 

scale the resources (or configurations) of micro services 
dynamically according to the application requirements and 
behaviors (e.g., historical resource usage). In the performance 
validations, we implemented an early prototype using Docker, 
Kubernetes, and Apache Kafka. Through the preliminary 
experiment, we confirmed that the proposal can potentially 
improve the application processing time by sharing and scaling 
micro services appropriately. In the future, we will evaluate the 
proposed performance in relatively large-scale environments. 
We will implement more realistic smart city applications and 
deploy the proposal to actual smart cities. In addition, we will 
propose prediction of the transition of resource utilization by 
applying machine learning. 
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