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Table 1: Abbreviations
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Fed4IoT Glossary

Table 2 lists and describes the terms that have been considered relevant in this deliverable.

Term Definition

FogFlow An IoT edge computing framework that automatically orches-
trates dynamic data processing flows over cloud- and edge-
based infrastructures. Used for ThingVisor development

Information Centric
Networking

New networking technology based on named contents rather
than IP addresses. Used for ThingVisor development

IoT Broker Software entity responsible for the distribution of IoT infor-
mation. For instance, Mobius and Orion can be considered as
Brokers of oneM2M and FIWARE IoT platforms, respectively

Neutral Format IoT data representation format that can be easily translated
to/from the different formats used by IoT brokers

Real IoT System IoT system formed by real things whose data is exposed trough
a Broker.

System DataBase Database for storing system information

ThingVisor System entity that implements Virtual Things

VirIoT Fed4IoT platform providing Virtual IoT systems, named Vir-
tual Silos

Virtual Silo (new
name for IoT slice in
D2.1)

Isolated virtual IoT system formed by Virtual Things and a
Broker

Virtual Silo Controller Primary system entity working in a virtual Silo

Virtual Silo Flavour virtual silo type, e.g. a ”Mobius flavour” is related to a virtual
silo with Mobius broker, a ”MQTT flavour” refers to a virtual
silo with MQTT broker, etc.

Virtual Thing An emulation of a real thing that produces data obtained by
processing/controlling data coming from real things.

Tenant User that access the Fed4IoT VirIoT platform to develop IoT
applications

Table 2: Fed4IoT Dictionary
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1 Introduction

1.1 Deliverable Rationale

This deliverable reports the first version of the Fed4IoT system architecture. It is centred
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alternatives.
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1.3 Executive summary

1.3.1 Deliverable description

This deliverable reports the first version of the Fed4IoT system architecture, and it also
includes the description of possible development frameworks. In section 2, we report
some background information concerning IoT services offered by cloud providers, on IoT
open-source brokers (with a focus to oneM2M and FiWARE solutions), and finally we
report on related projects. In section 3, we introduce some fundamental concepts of
our architecture, named VirIoT, while in section 4 we describe the components of the
architecture, their roles and relationships, in detail. In section 5, we describe two possible
frameworks for the development of a fundamental system component, the ThingVisor,
which actually carries out the ”thing virtualization” process. In section 6, we describe the
NGSI-LD data model, its APIs and the ongoing standardization process carried out within
the ETSI ISG named CIM, which our project (among other stakeholders) is contributing
to. Indeed, the NGSI-LD data format has been chosen as the neutral data format to be
used inside our architecture; in section 6.5 we describe in detail how our platform is going
to exploit NGSI-LD as the neutral format and how we are going to implement mappers to
translate from existing formats to the neutral format, and back; moreover, the NGSI-LD
API and Broker will have a central role in the second release of the architecture, enabling
support of semantic capabilities, as briefly described in section 7, which outlooks our plan
for next release/second iteration at the architecture.

1.3.2 Summary of results

This deliverable presents the first version of the Fed4IoT system architecture, named
VirIoT , which enables virtualization of IoT systems, formed by virtual things and brokers.

Our goal is to decouple developers of IoT applications from providers of things. VirIoT
allows owners of IoT heterogeneous infrastructures to share them with many IoT appli-
cation developers, which can simply rent the virtual things and the brokers their applica-
tions need. As described in the use-case deliverable D2.1, VirIoT can be useful for small
stakeholders whose applications require large-scale IoT infrastructures, who are otherwise
unable to handle the infrastructure deployment. VirIoT can also be useful for owners of
private IoT infrastructures, in order to create isolated development environments where
to run experimental services, before final deployment in the production system.
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2 Background

2.1 IoT Cloud Services

Electronic industrial control devices deployed for tasks such as control of equipment for
electricity generation in power plants, control of trains or automobiles, have been in use
for years. Now that these devices are Internet-capable, an IoT revolution is starting to
emerge, just like the Internet revolution emerged when computers in use for years, but
in isolation, were interconnected thanks to the network.

IoT applications require sophisticated coordination across connected objects, multi-
ple clouds and networks, and the mobile front-ends. This is a complex endeavor, and
developers do not want to do it from scratch. Hence cloud services for IoT are quickly
emerging to facilitate IoT development, supported by providers that range from hardware
vendors (Intel IoT platform, Bosch IoT Cloud) to system integrators (IBM Watson IoT)
to the known ICT giants (Google Cloud IoT, AWS IoT, Microsoft Azure IoT).

All the above IoT cloud services operate on similar architectures. There is usually
a Things layer, a (more or less explicit) Edge layer, a Cloud Layer and a Data layer.
For instance, Microsoft Azure IoT has Things that generate data, Insights based on data
generated, and Actions based on insights. Amazon AWS IoT has Device Software (both
an OS for microcontrollers and the Greengrass Core to run on more powerful edge devices)
and Control Services (Things Graphs, Analytics, Management) on the cloud. The Google
Cloud IoT distinguishes between a Cloud IoT Edge plane, a Data Analytics in the cloud
and a Data Usage plane.

The basic idea is to invite the user to bring her own set of sensors and actuators
to their architecture, and they offer many functions on top, ranging from analytics to
simplified device integration, from automated dashboards to improved security, from the
scalability of billions of sensors/messages to flexible deployments. Accordingly, specific
SDKs are provided to support application development.

2.1.1 Exemplary Case Study with AWS IoT

For instance, connecting a RaspberryPi-based device to the AWS IoT cloud is a matter
of generating a pair of security keys through the graphical console, then registering the
device in the same console and deploying the C SDK on the Raspberry, which then
securely connects via MQTT to the AWS cloud. A Thing Shadow (the cloud counterpart
of the device) is then available for UPDATE, GET or DELETE methods, via both MQTT
or RESTful APIs.

It is interesting to study how, in the above scenario, the AWS IoT ecosystem (see
figure 1) leverages this edge node to distribute computation. In our example, the Rasp-
berryPi acts as edge, and by allowing the cloud ssh access to it, we are able to automate
installing AWS IoT Greengrass on it, so as to seamlessly extends AWS to edge devices
so they can act locally on the data they generate, while still using the cloud for manage-
ment, analytics, and durable storage. The RaspberryPi is then able to run AWS Lambda
functions, which we program and deploy through the unified dashboard or AWS CLI,
and exploit it, for example, to keep device data in sync when going on/off line.

Though all of the IoT cloud providers have similar levels of functionality and en-
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Figure 1: Amazon’s AWS IoT ecosystem

terprise reliability, some peculiarities are worth noticing. For instance, AWS offers a
customized version of FreeRTOS for incorporating low-power devices such as small mi-
crocontrollers within the AWS IoT ecosystem. Google IoT, on the other hand, has a
major focus on machine learning and makes possible running TensorFlowLite over Linux
and AndroidThings based edge devices/gateways.

2.1.2 Differences with Fed4IoT VirIoT

While the platforms above mentioned mainly offer cloud services to IoT devices of cus-
tomers, greatly extending their potential, the Fed4IoT VirIoT system is instead focused
on offering things as-a-service, by acquiring (control of) an ever-growing number of devices
out there in the field, and by virtualising them to supply a scalable layer of horizontally
share-able IoT resources to customers. Moreover, the virtual things rented by a cus-
tomer/tenant can be, in turn, connected to upstream cloud service platforms as if they
were real, un-shared, IoT devices. In this sense, the VirIoT services are complementary
to most of the existing solutions and can interoperate with them in an extended IoT
chain (see bottom-right of figure 10).

From another perspective, Fed4IoT VirIoT system wants to push forward the role of
IoT cloud providers. They should make the move towards acquiring (control of) the ever
growing number of devices out there in the field, and by virtualizing them they should
supply a scalable layer of horizontally share-able IoT resources to their customers, making
them able to develop their applications in tightly isolated environments that may exploit
thousands of diverse virtual things as if they were fully dedicated to the application.

2.2 IoT Platforms and Brokers

IoT systems are composed of a set of interconnected devices handled by an IoT software
platform, such as one of those previously presented. The platform is designed in such a
way that it can connect to a vast number of IoT devices [1], and may rely on IoT Brokers,
which are components exposing IoT information and services of the connected devices
through a unified API and data model.
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The design and development of the broker functionality are focused on efficiently
managing a plethora of IoT use-cases, by employing both request/response and publish/-
subscribe messaging patterns and by exposing a public API based on open and standard
protocols. An IoT broker stores information according to a specific data-model and ex-
poses a secure API for publishing, fetching and discovering IoT data items, devices, and
the likes. Additionally, by using a distributed approach, many brokers can be intercon-
nected to scale out the system. E.g., an IoT platform can comprise a set of ”edge” brokers
connected to a core broker. Sensors publish data on edge brokers, while users submit data
requests to the core broker, which in turn relay the request to specific edge brokers.

Besides proprietary cloud platforms, two different IoT platforms have gained much
interest by both industry and academia, thanks to the endorsement received so far by
standardization bodies and industry and their ultimate objective of providing interop-
erability with third-party systems. These two platforms are oneM2M [2, 3], and FI-
WARE [4]. Currently, another IoT platform is emerging, thanks to the effort made by
the ETSI ISG CIM workgroup, namely NGSI-LD [6]. NGSI-LD is actually an evolution
of NGSI specifications [5] used within FIWARE, it is based on JSON-LD (LD stands
for Linked Data), which is now more powerful and flexible, allowing users not only to
describe context entities but also to define relationships between them.

In what follows we introduce oneM2M and FIWARE, while in section 6 we present
NGSI-LD, whose specification processes are supported by Fed4IoT project.

2.2.1 oneM2M

The oneM2M platform is a global standard initiative supported by eight ICT standard
development organizations spread all over the world [3], six industry fora and more than
200 members.

OneM2M provides functionality for managing IoT devices and their information. The
functionality forms the so-called Common Service Layer, where things are represented
including their semantics, and API for discovery, data subscription/notification, etc.

The oneM2M architecture is formed nodes, which could be Application Dedicated
Nodes (ADNs), Application Service Nodes (ASNs), Middle Nodes (MNs), and Infras-
tructure Node (INs). Each node can comprise three different entities: Network Service
Entity (NSE), Common Service Entity (CSE) and Application Entity (AE). An AE is
actually the application specific software that generates or consumes IoT data. CSE is
the entity offering the functionality of the Common Service Layer, e.g. it stores data
comings from AEs, supports their discovery and registering, exposes pub/sub API, man-
ages access policies, etc. NSE is the entity providing data transport, the standard defines
a number of different bindings to transport protocols, including HTTP, MQTT, CoAP,
and Websockets.

AEs usually run in ADNs and interact with the platform through a Common Service
Entity (CSE), running in either in a MN (MN-CSE) or in an IN (IN-CSE). The CSE
API supports data publishing, authentication, information discovering and subscriptions
to name a few. A CSE can operate as stand-alone or in a hierarchy formed by a central
infrastructure CSE (IN-CSE) and peripheral Middle Nodes CSE (MN-CSEs).

For interaction among AEs and CSE, oneM2M defines three reference points. The
Mca reference point for interactions between AEs and CSEs, the Mcc for interactions
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between different CSEs of the same provider and the Mcc’ which is for the interaction
between the infrastructure CSEs of different providers.

Within a CSE, oneM2M [3] represents IoT resources in a hierarchy whose main ele-
ments are Application Entities (AEs), Containers and Content Instances (the actual data
items), as shown in Figure 2. Every IoT device or IoT application is an AE represented
by an AE element of the resource tree. The AE element contains Containers that store
Content Instances, i.e., the actual IoT data items. For instance, a sensor can be a source
of content instances; an actuator can be a consumer of content instances, which represent
its status (e.g., on/off); an application logic can fetch Content Instances from different
Containers, make some reasoning on top of them and publish a new state information in
a Container where the actuator is registered to. Relevant oneM2M resources including
AEs, containers and content instances can also be annotated with semantic information
about the resources and the contained data .

Figure 2: oneM2M resrouce tree

oneM2M has also faced the problem of representing information from different vendors.
For instance, for a light switch we can have a different set of values: ”On/Off”; ”1/0” or
”True/False”. In the scope of Home Appliances, they have defined an Information Model
(document TS-0023) providing a unified means in the oneM2M system.

Currently, many CSE implementations exist, including Mobius [7], OpenMTC, Eclipse
OM2M, etc. For our purposes, the CSE can be considered as a oneM2M Broker.

2.2.2 FIWARE

FIWARE [8] has been developed as the core platform of the Future Internet PPP funded
by the European Commission between 2011 and 2016. During this time a FIWARE open
source community and ecosystem has been created, whose coordination has since been
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taken over by the FIWARE Foundation. FIWARE provides a catalog for sharing open-
source platform components, called Generic Enablers (GEs) that are intended to make
the development of smart applications easier.

One of the most significant platform components is the Context Broker, the entity
responsible for the distribution of the information. So far, there are two implementa-
tions: Orion Context Broker1 and Aeron IoT Broker2. Both implementations provide a
publish/subscribe messaging pattern, as well, as a method to query the stored context
information. They adopted Next Generation Service Interfaces (NGSI) REST API, a
technology standardised at Open Mobile Alliance (OMA) [5, 9]. Additionally, thanks
to the work of ETSI ISG CIM workgroup [6], NGSI has evolved into NGSI-LD (based
on JSON-LD) allowing for a richer representation of information. Since NGSI-LD is of
paramount importance for this project we have dedicated a whole section, Section 6, to
thoroughly describe it. NEC is currently implementing its NGSI-LD Broker (Section ??)
with the intention of replacing the Aeron IoT Broker. In parallel, there exists an extension
to ORION called ORION-LD3 that also adopts NGSI-LD.

Focusing on the IoT domain, and the corresponding integration of IoT devices into
the platform, FIWARE uses a component called IDAS, which is a backend for device
management. This component makes use of IoT Agents for translating the information
coming from IoT lightweight protocols, such as MQTT or CoAP, among others, to the
NGSI representation. Figure 3 shows the interactions between these components.

Figure 3: FIWARE-Diagram

1https://fiware-orion.readthedocs.io/en/master/
2https://github.com/Aeronbroker/Aeron
3https://github.com/Fiware/context.Orion-LD
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2.3 Related projects

In this section, we briefly describe past or ongoing project whose findings can be connected
or inspirational to Fed4IoT.

2.3.1 Wise-IoT

The Wise-IoT project was a joint R&D project between Europe and South Korea from
2016 to 2108. The name Wise-IoT stood for Worldwide Interoperability for SEman-
tics IoT. The focus was on using semantics to create interoperability between different
standard-based platforms and technologies, in particular oneM2M and FIWARE.

Key application domains were smart city and smart skiing resorts, and applications
were developed that run both in Europe and South Korea, with a concept about how
domains could be federated, so that users would seamlessly be able to use an application
across countries, e.g. when requesting free parking spaces, depending on their location
being in Santander or Busan, they would get the desired parking spaces in their vicinity.
This federation concept was developed based on FIWARE NGSI, and it can also be
realized using the NGSI-LD Broker which is becoming available to the Fed4IoT project.

One of the main aspects of Wise-IoT was the use of semantics to achieve interop-
erability. Ontology-based data models for the different application areas were defined,
enabling translation of information between the different platforms and technologies. In
particular, the concept of Morphing Mediation Gateway (MMG) was developed that al-
lowed the dynamic instantiation of translation components making information from one
platform available on the other, on the basis of the previously agreed ontology concepts.

The Adaptive Semantic Module (ASM) of the Morphing Mediation Gateway as shown
in Figure 4 showcases the automatic, semantics-based translation from the oneM2M plat-
form to the NGSI-based FIWARE platform. Raw information in the oneM2M platform
was annotated with semantic information to provide the necessary basis for the trans-
lation. The ASM would discover semantically annotated resources and check whether a
translation module is available. If that was not the case, it was checked whether such a
module was available in a code repository and could be dynamically instantiated. When-
ever such a module was available, the ASM would subscribe for new content instances
becoming available in the oneM2M platform. This content information together with the
semantic annotation was then used to translate the information into NGSI and push the
information to the NGSI-based FIWARE platform, making the information originally
only available to oneM2M applications also available to FIWARE applications. This
translation functionality may also be useful to take raw information from a oneM2M
platform, semantically annotate it, and make it available in the NGSI-LD format.

Results and translation approaches of Wise-IoT will be explored in Fed4IoT to trans-
late information gathered from real IoT systems into the neutral format used inside the
platform, namely NGSI-LD (see sec. 4). Besides, translators will be also used inside the
so-called Virtual Silo Controller to translate from the neutral format to the format used
by the Virtual Silo Broker.
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Figure 4: Adaptive Semantic Module of Morphing Mediation Gateway

2.3.2 CPaaS.IO

CPaaS.IO, ”City Platform as a Service. Interoperable and Open” (see http://www.

cpaas.io), started in 2016 and recently finished, is a joint R&D project between Europe
and Japan. It aims at innovating in the scope of Smart Cities. This means creating value
for the society and all actors in the city environment people, private enterprises, public
administrations. To achieve this, the CPaaS.io platform combines the capabilities of the
Internet of Things (IoT), big data analytics and cloud service provisioning with Open
Government Data and Linked Data approaches.

The main focus in this project is to provide a federation of EU and JP platforms, that
allows the secure exchange of information. For the EU side FIWARE relevant components
such as Orion and Aeron brokers, IDAS for integrating the information coming from IoT
devices, and COMET for generating historical information among others. Additionally,
by using the NGSI interface and data model the integration of heterogeneous information
was a success too.

Among other outcomes of this project, we highlight the development of a new FI-
WARE GE (Generic Enabler) called FogFlow [13]. A framework for dynamically or-
chestrate IoT deployments in both edge and cloud planes. It also provides a GUI
which allows users to easily define the tasks that must be executed by IoT Gateways
or servers in the different planes. Its specification and documentation can be found in
(https://fogflow.readthedocs.io/en/latest/).
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Figure 5 presents a high-level view of this framework where we can understand its
mode, of operation, as well as the interactions that this framework has with the producers
and consumers of the information.

Figure 5: High-level view of FogFlow framework

According to this figure, Fogflow creates dynamic processing flows which can be de-
ployed in both edge and cloud environments. The flows deployed at the edges process and
aggregate the information coming from the producers and make it available to consumers
for decision making thanks to the use of a Broker.

Fed4IoT plans to reuse and in case evolves FogFlow as a development framework for
ThingVisors, as detailed in section 5.

2.3.3 IoT-Crawler

IoTCrawler [14], (http://www.iotcrawler.eu), is an on-going R&D project, which
started in 2018, with the aim of creating a search engine for Internet of Things devices,
making real-world data accessible and actionable in a secure and privacy-concerned man-
ner.

In light of the overall architecture presented in Figure 6, there are different layers
responsible for the integration of IoT frameworks; Security, Privacy and Trust; Crawling;
Discovery and Indexing; Semantic search. It provides a distributed IoT framework based
on brokers that use NGSI-LD for homogeneously representing the resources integrated
into the IoTCrawler platform.

Security, Privacy and Trust is a transverse component responsible for providing se-
cure exchange of information between the integrated IoT platforms and the users. This
component takes into account not only the integration of different enablers for authen-
tication, and privacy, but also the representation of security properties attached to the
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Figure 6: Overall architecture of the IoTCrawler framework

integrated information, so that it can be later used in the semantic search carried out by
the final users.

Results of IoT-Crawler can be used in the second release of Fed4IoT architecture in
order to support semantic search of virtual things, as briefly reported in sec. 5.
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3 Concepts

3.1 Virtual IoT Systems

Nowadays, most of the real-world IoT solutions operate within isolated silos containing
both the infrastructure and the full-stack software. For small stakeholders, the infrastruc-
ture provisioning might be an insurmountable barrier that prevents their entering in the
IoT arena, even though they might have innovative ideas. For instance, let us consider
use cases for smart lighting or crime prevention systems in a big city. Tens of thousands
of presence sensors, cameras and intelligent light bulbs are necessary, with a very high
initial capital expenditure. Such high costs would be affordable to a small number of
large corporations only, thus preventing fair competition and, even worse, slowing down
the innovation pace, which instead is fast when thousands of small stakeholders take the
field.

For almost all of today’s applications running in production environments, Infra-
structure-as-a-Service solutions have provided a convenient and widely adopted approach
for renting the needed computing resources. Tenants can just focus on their applications,
because the infrastructure, formed by computing, storage and network resources, is offered
as a service by a cloud provider.

In this section, we introduce the key concepts behind the Fed4IoT system architecture,
named the VirIoT platform, which re-uses cloud concepts but adapts them to the IoT
world. VirIoT provides IoT developers with virtual IoT systems, named Virtual Silos4,
which are isolated environments that include IoT Brokers and a data domain dedicated
to the single tenant. Virtual Things appear to a tenant as dedicated sensors that expose
their data through a configurable broker technology (e.g. oneM2M [2], FIWARE [4], and
the likes). Just like a traditional cloud offers virtual servers with configurable virtual
hardware and operating system (OS), VirIoT offers Virtual IoT Systems with a config-
urable set of Virtual Things (akin to the hardware) and a Broker (akin to the OS).

VirIoT decouples IoT infrastructure providers from application developers, thus mak-
ing possible: for the providers, to better use their IoT devices by sharing their data with
different tenants, and, for the tenants, to configure the IoT infrastructure they need,
quickly. Provider and tenant may also coincide, exploiting VirIoT for running exper-
imental services within the private infrastructure in use every day, raising higher the
security bar by running applications and their things inside isolated environments.

3.2 Virtualization Platform

Figure 7 visualizes the main concepts behind the VirIoT platform. On the left we have
many IoT Systems, where an IoT System is made of a network of real things (sensors,
actuators, etc.) exposing information through an IoT platform, such as FIWARE Orion
or Mobius [7] oneM2M. Hence, an IoT System is formed by a collection of real things and
by the platform that manages them.

4In D2.1 and in the DoA, Virtual Silos was called IoT slice. We renamed them to avoid confusion
with ”5G” IoT slices. Indeed, VirIoT is at a higher layer and could use underlying 5G slicing and, in
case, edge computing services for connecting and deploying its internal components, such as ThingVisors
to Virtual Silo, etc. However, VirIoT can be deployment over plain Internet too.
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Figure 7: Fed4IoT VirIoT Platform

Information coming from different IoT Systems, and possibly from other data sources
(e.g. open data), forms a Root Data Domain, from which VirIoT gathers information.
Specifically, a group of VirIoT components named ThingVisors fetch the information and
generate data items associated with Virtual Things. Consequently, a Virtual Thing is
an emulation of a real thing that produces data obtained by processing/controlling data
coming from the root data domain.

Figure 8 presents a diagram where we have emulated four virtual things (right side
of the figure) out of three real things (left side of the figure). The three real things are a
stationary camera, a camera-equipped drone and a thermometer, whereas the four virtual
things are a face detector, a person counter, a moving camera and a thermometer.

The things’ virtualisation concept that we are considering in this deliverable may go
beyond traditional data processing, since it can also involve “control” of the real things.
Let us explain this concept by detailing the virtualisation process made to obtain the
virtual things presented on the right side of figure 8. The virtual face detector and virtual
person counter obtain their data by performing analytics on the video stream coming from
the real camera. The virtual thermometer obtains its data by merely copying data coming
from the real thermometer. Finally, the virtual moving camera is a camera that takes
pictures at a very slow rate (e.g. one frame per hour) which a user/tenant can relocate to
one or more given positions, such as interesting hot spots of a harbour in need of statistics
or surveillance. In this last example, virtualisation is achieved by controlling the path of
a drone to periodically drive it over the locations the tenants have chosen, and thereby
taking a picture.

Figure 9 depicts a general schema of how a ThingVisor receives data coming from one
or more real things (or other sources, e.g. the web) and processes it in its native format,
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Figure 8: Virtual Things (vThings)

in order to produce new data items that now belong to the virtual thing. These new
items are produced in a neutral data format that can be translated to the data formats
in use by different brokers.

The VirIoT platform provides tenants with virtual IoT systems, dubbed Virtual Silos,
which are isolated environments dedicated to a specific tenant for running his applications.
A tenant can add data coming from the platform’s virtual things to his virtual silo.
Besides, he can also connect his real things to his virtual silo. Collectively, such data
comprises the tenant data domain which is exposed to the external world through a
broker technology of choice.

For instance, let us assume that Bob is a tenant who wants to develop a watering
system for his house, and he is familiar with the FIWARE Orion Broker. Bob can create
a virtual silo that embeds such a broker, connect his own thermometers and watering
devices (actuators) to the broker, and he can then ”rent” a virtual hydrometer for mea-
suring air humidity outside his house, just because he does not own a real one. Data
from the rented hydrometer reaches Bob’s broker in the silo, together with data from his
sensors. So, Bob only sees his dedicated data set and broker, by accessing his silo, and
the platform thereby provides for data and service isolation.

3.3 High-Level Usage Scenarios of the Platform

Similarly to cloud computing and as already described in D2.1, we envisage two possible
high-level usage scenarios of the VirIoT platform, public and private.

In the public scenario, we foresee three distinct types of stakeholders: i) providers
of real IoT systems offering their data in different formats, ii) providers of the VirIoT
platform (or more than one VirIoT platform, competing for the market), which use
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Figure 9: ThingVisor

this data to set up virtual things, iii) IoT application developers renting IoT virtual
silos. This use case is going to be crucial in large-scale environments, such as smart
cities, whereby the City owns several arrays of sensors and sells the raw data streams
to a VirIoT provider, which acts as the intermediary between the vast amount of raw
resources and the applications. Designers of smart city applications can instantiate silos as
a service in the platform, gaining access to perhaps thousands of selected virtual things
and a brokering environment of choice, without caring about infrastructural and data
heterogeneity problems. Regarding data heterogeneity, we note that many IoT platforms
cope with it by transforming external heterogeneous data items into an internal format
(e.g. through proxies) and then by exposing that format to the final user, through a
specific API. VirIoT makes a step forward: the data model and the API are a choice of
the user rather than a platform one.

In the private scenario, the same actor owns both the infrastructure and the appli-
cations. She can use VirIoT both to enclose each IoT application in a small isolated
environment (i.e. a virtual silo) and to support safe innovation, by decoupling the newly
designed IoT applications from IoT services that are already in production. For instance,
a company operating a smart harbour system may have a robust solution in place, where
the existing application exploits various real sensors through a production broker. A
novel version or an enhancement can be safely tested in a virtual silo, before final de-
ployment in the production environment. Security-wise, a choice can be made as to what
to expose to attacks from the outside. In short, a private approach to IoT virtualisation
offers the same advantages a private cloud is nowadays offering to companies deploying
their servers in virtual vs. bare-metal.
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4 System Architecture - First Release

Figure 10: System Architecture - first release

Figure 10 shows the first release of the Fed4IoT VirIoT platform. This architecture
follows a micro-services design, hence each component is an autonomous subsystem ex-
posing network interfaces. This enables upgrades and updates to be injected without
interrupting the platform operations, and multiple developers can work on independent
components, making faster the platform growth and innovation. Linux containers (e.g.
Docker) have been considered as the preferred component packaging tool, possibly sup-
ported by a container orchestration tool such as Kubernetes (k8s).

For external communications, the platform exposes an HTTP REST interface for the
administrator and the tenants (users of the platform). Internal communications use a
topic-based pub/sub system whose topics are reported in table 4 and detailed in the
following.

There are control and data topics. Control topics are used by all components to receive
(c in) or send (c out) control messages. Data topics are used to convey (data out) the
data items of virtual things.

On the left of figure 10 there are the ThingVisors (TVs), each uniquely identified by a name
(TViD). A ThingVisor generates data items of one or more virtual things (vThings) and each
virtual thing is uniquely identified by a name (vThingID5). The architecture is agnostic to the
technology used to develop a ThingVisor, since ThingVisors run within an own container (or

5The <vThingID> must be equal to <TViD>/<vThingLID> where <vThingLID> is a local identifier,
e.g. a random number
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Table 4: System Topics

Topic Naming Description

vThing
(Data)

vThing/<vThingID>/

data out

Used by a ThingVisor to publish data items
of a virtual thing.

vThing
(Control)

vThing/<vThingID>/

{c in,c out}
Used by a ThingVisor to send (c out) and
receive (c in) control information related to
an handled virtual thing (e.g. change data
source, add face to match, motion threshold
update, change virtual camera position, etc.)

ThingVisor
(Control)

TV/<TViD>/

{c in,c out}
Used by a ThingVisor to send (c out) or re-
ceive (c in) control messages related to the
whole ThingVisor (e.g. pause, remove, acti-
vate vThing, etc.)

vSilo
(Control)

vSilo/<vSiloID>/

{c in,c out}
Used by the vSilo controller to send (c out)
or receive (c in) control messages related to
the specific virtual silo (e.g. add vThing, re-
move vThing, etc.)

Master
(Control)

master/

{c in,c out}
Used by the Master-Controller to send (c -

out) or receive (c in) control messages re-
lated to the system configuration

k8s pod). However, it is necessary that it communicates with the other components through
vThing and ThingVisor topics (again, see table 4).

On the right of figure 10 there are virtual silos (vSilos), which are used by tenants (Bob,
Hana, Lucas and Andrea in the picture). Each silo is identified by a unique name (vSiloID).
There could be different types of virtual silos, which differ in terms of broker type, scaling
property, storage model, etc. We call flavor a specific configuration of a virtual silo, therefore
a virtual silo is an instance of a given flavor. In figure 10, Bob and Hana have their own virtual
silos (#a and #b, respectively) whose flavor is the same and includes a oneM2M broker to
which their applications connect to. Lucas uses a virtual silo of a different flavor, instead, which
exports the IoT data of his virtual/real things via simple MQTT topics. This is a kind of raw
virtual silo, which can be in turn connected to an upstream IoT platform such as Node-Red or
Google/Azure/Amazon IoT cloud services, according to the application design and deployment
strategies. Another flavor may include a NGSI-LD context broker that is able to talk to the
upstream NGSI-LD-friendly App of yet another tenant, Andrea.

Each virtual silo includes an internal controller that is used to configure it (e.g. for adding
or removing instances of virtual things) and also to relay and translate the data items of selected
virtual things from the ThingVisor to the silo’s broker. Again, the architecture is agnostic to
the technology used to develop a virtual silo, as each silo runs in an own container (or k8s pod).

The Master-Controller manages deployment of new components in the systems as well as
their configuration, following requests coming from administrator and tenants. System state
information, about virtual silos, virtual things, ThingVisors, etc. is stored in a System DB.
Container images of silo flavors and ThingVisors are maintained by specific object stores (e.g.
Docker Hub).
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4.1 Basic Procedures

We now describe some basic procedures.
The administrator can request to add a new silo flavor or ThingVisor, in order to extend the

VirIoT platform’s capabilities. Consequently, the Master-Controller inserts the new container
image of the silo/ThingVisor into the proper stores and updates the System DB. In case of
ThingVisors, it is then the underlying container platform that runs instances of them. As soon
as it is up and running, a ThingVisor starts to publish data items of the virtual things it handles
to the related data topics.

When a tenant requests creation of a virtual silo, the Master-Controller fetches and runs an
instance of the image of the requested flavor, providing the tenant with an IP address and port
where she can contact the broker running inside the virtual silo. Subsequently, a tenant can
request virtual things to be added to her virtual silo. The Master-Controller, in turn, relays
this request to the virtual silo controller through its input control topic. Consequently, the silo
controller registers the necessary metadata in the silo’s broker and becomes a subscriber of the
virtual thing data topic, thereby starting to receive related data items. These data items are
translated from the neutral format to the data model used by the silo’s broker, and then they
are eventually pushed to the broker. The Master-Controller stores all configuration information
of the virtual silos in the System DB.

4.2 Virtual Actuators

Up to now, we have silently assumed that vThings are data producers, and we used pub/sub
distribution model to easily support multi-tenancy: a virtual thing publishes data on the data -

out topic and many tenants (subscribers) can exploit this data. But what if a vThing is an
actuator? Does it still make sense to talk about multi-tenancy in this case, and what would it
mean that many tenants share the same (virtual) actuator? At this stage, we are still exploring
the multi-tenancy issue. Without multi-tenancy, VirIoT can provide a tenant with exclusive use
of an actuator exposed as a vThing, just like, in the traditional cloud, a tenant can rent bare
metal servers. For instance, an street lamps infrastructure provider can integrate into VirIoT a
ThingVisor, which handles a set of vThings related to the lamps it wants to offer to the tenants’
control. A tenant can insert in its vSilo the vThing that controls the street lamp close to her
house to control on/off state, e.g. according to other IoT data available in her vSilo. To support
the reception of triggering events (e.g. ”light on”) from the vSilo to the vThing, the platform
uses a secure data in topic that will be better detailed in the second release of the architecture.

Obviously, since the beginning VirIoT supports the use of actuators own by the tenant, i.e.
neither virtual nor rented by VirIoT . This concept is shown in picture 8, bottom right, where
the watering device (actuator) is a real thing directly connected to the tenant data domain.

4.3 Customizable Virtual Things

In many use cases, tenants need to customize the service offered by a ThingVisor. For instance,
Bob may need a virtual thing providing face detection for his son, while Hana for her daughter.
The function is the same, face detection, but the inputs and the outputs are different. For Bob,
the input is an image of his son, the output may be the captured picture in case of face detection
and this output must be transmitted only to the Bob virtual silo. The same reasoning can be
repeated for Hana.

The support of ThingVisor customized services will be included in the second architecture
release. Anyway, we present a very preliminary idea: the ThingVisor can create virtual things
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on-demand, each of them offering the service needed by a specific tenant. For instance, in the
previous example, Bob can request to add to his silo a face detector vThing, piggybacking an
image of his son in the request. In turn, the related ThingVisor may create a dedicated vThing,
whose data out topic is only subscribed by Bob’s silo controller. Hana can make the same
for detecting her daughter. We point out that we are anyway exploiting the sharing of real
resources because the ThingVisor uses the same video streams for the different face detection
threads.
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5 ThingVisor Design Technologies

How to exploit agile and innovative technologies in the field of services’ development, be they
spot-on centred on IoT or bordering it, is the topic of this chapter. The goal is for us to scout
solutions able to shape, guide, and support the implementation and deployment of ThingVisors.

To this end, solutions providing service function chaining are valuable candidates. We can
devise a ThingVisor as formed by an ordered set of tasks, composing in this way a service
function chain where the last task has the goal of publishing produced data on VirIoT system
topics. In what follows we present two ”instruments”, FogFlow and ICN, that can be used as
middleware to develop ThingVisors on top of the Root Data Domain.

5.1 FogFlow

Traditional Big-Data analysis approaches follow a scheme by which all the data sources are
integrated in a single or distributed service where they can be exploited by using different
techniques and technologies. This approach relies on a single point to make the aggregation
and processing, requiring a high-performance machines for such an arduous task. Fog and Edge
computing techniques promote a change in the paradigm, allowing edge nodes to make initial
aggregating tasks that alleviate the final and more complex task carried out at cloud level.
FogFlow [13] is an IoT edge computing framework that addresses this new change of paradigm.

Figure 11 presents the high-level architecture of this framework. As we can see there are

Figure 11: High-level view of FogFlow architecture

three divisions we highlighted in red a box:

• Service management: It comprises task designer, Topology Master (TM), and docker
image repository, which are typically deployed in the cloud.

• Data processing: It consists of a set of workers (w1, w2, ..., wn) to perform data processing
tasks assigned by Topology Master. A worker is associated with a computation resource
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in the cloud or on an edge node and can launch multiple tasks based on the underlying
docker engine and the operator images fetched from the remote docker image repository.

• Context Management: Finally, this division comprises a set of IoT Brokers, a centralized
IoT Discovery, and a Federated Broker. These components establish the data flow across
the tasks via NGSI and also manage the system contextual data, such as the availability
information of the workers, topologies, tasks, and generated data streams.

Therefore, each service to be deployed is made by a set of tasks that receive and send
”flows” of data, either from IoT sources or from other tasks. These tasks, also called fog-
functions, request IoT data to the internal Orion Broker. For its definition, FogFlow provides
a graphical user interface which allows the user to easily define the consumed information per
task, as well as the output information.

Focusing on the design of the ThingVisor and how FogFlow can help in its development
and deployment, we present in Figure 12 the envisioned integrated view of both technologies.
Information coming from both NGSI and non-NGSI compliant device in the Root Data Domain
and/or services can be integrated, requiring for the latter the use of specific adapters. A
FogFlow orchestrator takes care of deploying fog-functions to optimized locations that offer
Cloud/Edge/Fog computing functionality (on the left of figure 12).

Figure 12: Integration of FogFlow with other components
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Finally, data produced by a chain of fog-functions is published to the internal Broker and,
this way, different ThingVisors can merely fetch and republish them to the VirIoT system topics.

5.2 Information Centric Networks

This section initially reports an introduction on Information Centric Networks (ICNs) and then
an outlook about how this technology can be exploited for devising ThingVisors.

An ICN is a communication architecture providing users with data items rather than end-
to-end communication pipes. ICN can support both request-response and publish-subscribe
[17] communication patterns. Its services resemble that of content delivery networks, but with
packet-level granularity.

The network addresses are hierarchical names (e.g. rs1/lamp/1502) that do not identify
end-hosts but data items (e.g. status of the lamp n. 1502 in the IoT Real System n.1). Figure 13
depicts the model of an ICN node and packets.

Figure 13: ICN forwarding engine model and packets

A data item and its unique name form the so-called named object. A named object is
actually a small data unit (e.g., 4kB long) and may contain an entire content (e.g., a document,
a video, etc.), or a chunk of it. The names used for addressing the chunks of the same content
have a common prefix (e.g., rs1/lamp/1502) followed by a sequence number identifier (e.g. s1,
s2, s3, etc.).

An ICN is formed by nodes logically classified as consumers, producers, and routers. Con-
sumers pull named objects provided by producers, possibly going through intermediate routers.
The consumer-to-producer path is labeled as upstream; the reverse path as downstream.

Any node uses the forwarding engine shown in figure 13 and is connected to other nodes
through channels, called faces, which can be based on different transport technologies such as
Ethernet, TCP/IP sockets, etc.

The data units exchanged in ICN are Interest packets and Data packets. To download
a named object, a consumer issues an Interest packet, which contains the object name and
is forwarded towards the producer. The forwarding process is referred to as routing-by-name,
since the upstream face is selected through a name-based prefix matching based on a Forwarding
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Information Base (FIB) containing name prefixes, e.g., rs1 in figure 13. The FIB is usually
configured by routing protocols, which announce name prefixes rather than IP subnetworks
[10]. During the Interest forwarding process, the node temporarily keeps track of the forwarded
Interest packets in a Pending Information Table (PIT), which stores the name of the requested
object and the identifier of the face from which the Interest came from (downstream face).

When an Interest reaches a node (producer or an intermediate router) having the requested
named object, the node sends back the object within a Data packet, whose header includes the
object name. The Data packet is forwarded downstream to the consumer by consuming (i.e.,
deleting) the information previously left in the PITs, like bread crumbs.

Each forwarding engine can cache the forwarded Data packet to serve subsequent requests
of the same object (in-network caching). Usually, the data freshness is loosely controlled by
an expiry approach. Any Data packet includes a metainfo field reporting the freshness period
specified by the producer, which indicates how long the Data can be stored in the network
cache.

The forwarding engine also supports multicast/anycast distribution both for Interest and
Data packets. Interest multicasting takes place when there are more upstream faces for a
given prefix (e.g., all in figure 13) and the incoming Interest is forwarded to all of them. In
case of Interest anycasting, a routing strategy properly select the best output face according
to given routing metrics. Data multicasting is implemented as follows: when a node receives
multiple Interests for the same object, the engine forwards only the first packet and discards the
subsequent ones, appending the identifier of the arrival downstream faces in the PIT; then, when
the requested Data packet arrives, the node forwards a copy of it towards each downstream face
contained in the PIT.

ICN security is built on the notion of data-centric security: the content itself is made secure,
rather than the connections over which it travels. The ICN security framework provides each
entity with a private key and an ICN digital certificate, signed by a trust anchor, and uniquely
identified by a name called key-locator [11]. Each Data packet is digitally signed by the content
owner and includes the key-locator of the digital certificate to be used for signature verification.
For access control purposes, Interest packets can be signed too.

An ICN uses receiver-driven flow/congestion control. To download a content formed by
many chunks, the consumer sends a flow of Interest packets, one per chunk, and receives the
related flow of Data packets. Flow and/or congestion control are implemented on the receiver
side by limiting the number of in-flight Interest packets to a given amount (aka pipeline-size),
which can be a constant value or a variable one, e.g., controlled by an AIMD scheme [12].

5.2.1 ICN Service Function Chaining

We can build ThingVisors by chaining functions and exploiting Information Centric Networking
(ICN) technology [15, 16], as well. We can take advantage of the name-based delivery of ICN so
as to build a ThingVisor based on a chain of in-network functions. We can better explain such
composition referencing Figure 14, where we present an example of a ThingVisor processing
the information coming from a camera. It comprises three chained tasks, which we reference by
their task names (TN in the following): image capture, human detection, and face detection.
Expressing these tasks by using unique and representative names, we can create a sequence of
in-network functions by a sequence of names.

Thus, we can exploit name-based delivery (routing-by-name) to form ThingVisors out of
in-network functions, where an in-network function can be either a sub-task of a ThingVisor
or another ThingVisor. This approach can then enable chaining of ThingVisors to create a
different ThingVisor.
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Figure 14: ThingVisor on ICN

Whenever the IoT systems forming the Root Data Domain are able to provide replicas of
in-network functions under the same name, the name-based anycast delivery capability of ICN
can be in turn exploited to properly select the best replica, thus increasing system reliability
and network efficiency.

Root Data Domains with a variety of information models and APIs are connected to an
ICN by adapters, which translate the models to our neutral format, namely NGSI-LD (see
Figure 15). Accordlingly, we are proposing to use the neutral format also inside the ThingVisor
ICN development framework.

One Root Data Domain adopting oneM2M standard publishes thermometer readings through
a rendezvous node. The reading is supplied to “TN: Data copy” to be used within the VirIoT
platform properly exposed as ThingVisor. A surveillance camera is connected through the
adapter “TN: camera adapter.” The “TN: image capture” requests an image from the camera
using the request-response communication in ICN. The retrieved image is first stored at the task
and forwarded to “TN: human detection” and then “TN: face detection” to find out a particular
person. After “TN: image capture,” the communication follows the publish/subscribe model.
For our IoT platform, both the publish/subscribe model and the request-response interactions
are needed, in order to have flexibility for reducing energy consumption.

A deployment management functionality decides where to place the tasks. Tasks can be
placed at the cloud, at the edge node, or even at the intermediate routers in ICN. Routing func-
tionality chooses task instances with the same task name (anycasting) to have good reliability,
load balance, and efficiency.
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Figure 15: Bridging between Root Data Domains and VirIoT with ICN
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6 NGSI-LD: neutral-format and Broker

NGSI-LD [6], as already introduced in the context of FIWARE in Section 2.2.2, is an information
model and an API that is being standardized by the ETSI Industry Specification Group on cross-
cutting Context Information Management (ETSI ISG CIM) and to which Fed4IoT is actively
contributing. This section is structured as follows. Section 6.1 illustrates the JSON serialization
of an entity, comparing between NGSI and NGSI-LD. Section 6.2 introduces the NGSI-LD
information model. Section 6.3 gives an overview of the NGSI-LD API. Section ?? introduces
the NGSI-LD Broker, highlighting how it/certain components can be used in Fed4IoT. Finally,
Section 6.5 describes how the NGSI-LD information model and representation will be used as
the neutral format in Fed4IoT.

Please notice that, in the following we interchangeably refer to NGSI or NGSIv2. NGSIv2
is the latest released specification of NGSI.

6.1 NGSI-LD evolves NGSI

Figure 16 presents an example of a ”vehicle” context entity represented using NGSI. As we can
see such entity comprises an identifier (id), a type and its attributes (brandName, isParked,
location, speed).

1 {
2 "id":"Vehicle:A100",

3 "type":"Vehicle",

4 "brandName":{
5 "type":"string",

6 "value":"Mercedes",

7 "metadata":{}
8 },
9 "isParked":{

10 "type":"boolean",

11 "value":true,

12 "metadata":{}
13 },
14 "location":{
15 "type":"coords",

16 "value":"41.2,-8.5",

17 "metadata":{}
18 },
19 "speed":{
20 "type":"number",

21 "value":"80",

22 "metadata":{}
23 }
24 }

Figure 16: FIWARE-NGSI representation of a vehicle parked at a location

We also present a possible, richer, NGSI-LD description of the same entity, in Figure 17.
This way we can compare the two representation formats as well as identify some advantages,
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such as the relationships between entities and the explicit GeoJSON encoding of the vehicle’s
location, provided by NGSI-LD.

1 {
2 "id":"urn:ngsi -ld:Vehicle:A100",

3 "type":"Vehicle",

4 "brandName":{
5 "type":"Property",

6 "value":"Mercedes"

7 },
8 "isParkedAt":{
9 "type":"Relationship",

10 "object":"urn:ngsi -ld:OffStreetParking:Downtown1",

11 "observedAt":"2017-07-29T12:00:04",

12 "providedBy":{
13 "type":"Relationship",

14 "object":"urn:ngsi -ld:Person:Bob"

15 }
16 },
17 "speed":{
18 "type":"Property",

19 "value":80

20 },
21 "createdAt":"2017-07-29T12:00:04",

22 "location":{
23 "type":"GeoProperty",

24 "value":"{\"type\":\" Point\", \" coordinates \":[-8.5,41.2]}"
25 }
26 }

Figure 17: FIWARE-NGSI-LD representation of a vehicle parked at a location

6.2 NGSI-LD Information Model

The NGSI-LD information model is a meta model whose main concepts are entities, properties
and relationships. The assumption is that the world consists of entities, which can be physical
entities like a car or a building, but also more abstract entities like a company or the coverage
area of a WLAN’s access points. Entity instances have a URI as an identifier and a type,
e.g. a car with identifier urn:ngsi-ld:Vehicle:A4567 and of type Vehicle. Entities have
properties, e.g. a location or a speed, as well as relationships to other entities, e.g. isOwnedBy
or isParkedAt. Furthermore, properties and relationships can be annotated by properties and
relationships themselves; e.g. a timestamp, the provenance of the information or the quality
of the information, can be provided by nested properties/relationships. The underlying model
thus represents a Property Graph and the respective concepts and relations are visualized in
the UML diagram in Figure 18.

Figure 19 shows an example of an NGSI-LD property graph. The scenario is that, in an ac-
cident, a car hit a lamppost to which a camera had been attached. Thus there are three entities,
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Figure 18: NGSI-LD concepts and relations

which are of types Vehicle, StreetFurniture and Sensor respectively. Each of these entities
has at least one property, e.g. the Vehicle with identifier urn:ngsi-ld:Vehicle:A4567 has the
property brandname, which has the value "Mercedes". It also has the relationship inAccident

whose target is the StreetFurniture with identifier urn:ngsi-ld:SmartLamppost:Downtown1.
The relationship has one property observedAt, which is a timestamp with the time of the
accident, and a relationship providedBy which relates to the police officer who entered the
information.

The idea is that different elements of the graph can come from different data sources, but
they can be easily combined as they relate to the same entity, i.e. in this case the police
database could refer to the lamppost and the city database could contain the information about
the attached camera, which might have been damaged as the result of the accident.

Figure 19: Example of an NGSI-LD property graph, source: ETSI ISG CIM

NGSI-LD is represented in JSON-LD and thus can have a grounding in RDF as JSON-LD
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is one serialization format for RDF. The NGSI-LD core model defining this grounding is shown
in Figure 20.

Figure 20: NGSI-LD Core Meta Model

We can see that NGSI-LD Properties and Relationships are subclasses of rdfs:Resource.
The reason is that referring them to rdf:Property, instead, would be limiting to our purposes,
because rdf:Property cannot be annotated as an instance with additional information, which
is what we need for creating properties of properties, as we can see in the graph of figure 19.
Conceptually this means that a statement about another statement is made, and this is not
directly possible in RDF.

The way to deal with it is to use rei-fication, from Latin ”making something a thing”, and
there are different ways to do it in RDF. We have chosen the so-called blank node reification.
An example is shown in Figure 21.

Figure 21: Example of blank node reification in NGSI-LD

The RDF property does not directly have the object as its target, but it points to a blank
node instead, which has the Relationship as its type. The blank node then has a special
rdf property hasObject, but can also have additional properties and relationships, such as
the observedAt property in the example. All NGSI-LD Relationships have the hasObject

property pointing to the entity that is the target of the NGSI-LD Relationship, and all NGSI-
LD Properties have the hasValue property that point to the value of the NGSI-LD Property.
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The advantage of the blank node reification is that in a JSON-LD serialization, the blank
node is not explicitly visible, but is hidden in the JSON structure. An example of an NGSI-LD
serialization is shown in Figure 22.

1 {
2 "id":"urn:ngsi -ld:Vehicle:A4567",

3 "type":"Vehicle",

4 "brandName": {
5 "type":"Property",

6 "value":"Mercedes"

7 },
8 "inAccident": {
9 "type":"Relationship",

10 "object":"urn:ngsi -ld:SmartLamppost:Downtown1",

11 "observedAt":"2017-07-29T12:00:00Z",

12 "providedBy":{
13 "type":"Relationship",

14 "object":"urn:ngsi -ld:Org:Officer123"

15 }
16 },
17 "@context":[

18 "http://uri.etsi.org/ngsi -ld/v1/ngsi -ld-core -context.jsonld",

19 {
20 "Vehicle":"https:// example.org/exampleOntology/Vehicle",

21 "brandName":"https:// example.org/exampleOntology/brandName",

22 "inAccident":"https:// example.org/exampleOntology/inAccident",

23 "providedBy":"https:// example.org/exampleOntology/providedBy"

24 }
25 ]

26 }

Figure 22: NGSI-LD serialization in JSON-LD

An important element in JSON-LD is the @context. It defines a mapping between the
simple string terms used in the serialization for identifying entity types, properties and re-
lationships, to specific concepts uniquely identified by a URI. While the NGSI-LD core terms
are all defined in http://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context.jsonld, the do-
main specific terms of the example like Vehicle and brandName have been directly defined in
the custom provided @context. These URIs can be defined in an ontology. Thus a semantic
grounding of the information is achieved and the information can be processed with semantic
tools and be combined with other semantic information.

6.2.1 NGSI-LD Cross-Domain Ontology

In addition to the meta model, NGSI-LD defines some mandatory concepts that are used as
part of the API. These are depicted in Figure 23.

In particular, some geographic properties represented in GeoJSON are defined, which are
used in the API to specify geographic scopes, and temporal properties, which are used in
the temporal API and unlike regular properties are not reified. Note how, in the example in
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Figure 23: NGSI-LD Core and Cross Domain Model

Figure 22, the temporal property observedAt is provided, which is also defined as an NGSI-LD
core term, and, as such, it is not separately listed in the custom @context.

6.3 NGSI-LD Application Programming Interface

The NGSI-LD API is an information-centric API based on the NGSI-LD Information Model.
It supports the management and retrieval of entity-related information. When requesting in-
formation, applications specify what entity information they want to retrieve. This can be a
specific entity, which is retrieved by its identifier, or entities can be discovered by providing the
required type(s). Especially in the latter case, it is important for scalability reasons to scope
and filter the results. For this reason a geographic scope based on a geographic property can
be defined in GeoJSON and filtering based on property values or relationship objects is possi-
ble. There is also a paging mechanism. Two interaction styles are supported, a synchronous
query/response and an asynchronous subscribe/notify style. For the subscribe/notify style, the
notification condition can be specified, which may be based on changes or time intervals.

Figure 24 shows the main logical comments assumed by the NGSI-LD API. NGSI-LD does
not define a specific architecture and instead has been defined with the intention of being
usable in different concrete architectures. At the core is a component called Broker. Context
Consumers request information from the Broker using either the query or the subscribe/notify
interaction style as described above.

In the simplest setup, there is a central Broker that stores all information. In this case
Context Producers create and update information in the Broker.

In a more advanced setup, not all information is stored by the Broker, but there are Context
Sources which themselves implement the query and subscribe/notify functionality of NGSI-LD.
Such a setup may be chosen for scalability reasons, or because different organizational units
want to stay in control of the information. Context Sources can also be complete Brokers again,
enabling the creation of a hierarchical federation of existing NGSI-LD deployments.

To enable a distributed scenario, Context Sources register what information they can pro-
vide with the Registry Server. Such a Registry Server can be implemented as a stand-alone
component or be tightly integrated with one or more Brokers. Context Sources can register
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Figure 24: NGSI-LD logical architecture

their information at different granularities. They can register a specific entity with properties
and relationships, e.g. for urn:ngsi-ld:Vehicle:A4567, the source has brandname, location
and speed. They can register that they have (any) information about a specific entity, e.g.
urn:ngsi-ld:Vehicle:A4567. They can register that they have certain information about en-
tities of a certain type in a certain area, e.g. entities of type ParkingSpace with properties
location and occupancy in the area covering the city of Heidelberg. Finally, they can register
that they have (any) information about certain types in a certain area, e.g. of type Vehicle in
the city of Heidelberg. This provides flexibility and enables having a trade-off between the cost
of keeping the index in the Registry Server up-to-date and the cost of requests, i.e. how many
Context Sources have to be asked on a certain request.

6.4 NGSI-LD Broker and Architecture

In the context of Fed4IoT project, we are developing an NGSI-LD Broker that supports multiple
different architectures, i.e. you can use it in a small centralized deployment, as well as a
hierarchically distributed and federated setting. The implementation is modular and micro-
service based using Kafka as the message bus and PostgreSQL as a database with PostGIS to
support geographic queries.

The NGSI-LD Broker can be used as the Broker for an NGSI-LD Virtual Silo, making
information available to user applications based on NGSI-LD. When using NGSI-LD as neutral
format, the related Silo Controller is completely straightforward, as all data notification can
directly be used for creating or updating the contained entity information in the NGSI-LD
Broker, making it directly available without needing an additional translation step.

Another possible use of NGSI-LD architecture for VirIoT is to support the semantic discov-
ery of available vThings, for which the use of the NGSI-LD Registry Server should be further
investigated. For each vThing, the related ThingVisor would register the NGSI-LD information
it can provide into an internal NGSI-LD Registry Server and the discovery interface of the
Registry could then be used by the user to find suitable vThings for her virtual silos.
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6.5 NGSI-LD as neutral format

For NGSI-LD to be able to effectively serve as a neutral format, two-way mappings must be
designed. On the one hand, ThingVisors must be able to convert from the format of the data
they use in the Root Data Domain, to the neutral format. On the other hand, for each vSilo
flavour the related Silo Controller must be able to convert from the neutral format to the format
in use by the internal broker. As show in figure 7, in addition to the raw MQTT pass-through
and to the native NGSI-LD (for NGSL-LD silo flavour), our minimum goal is to support two
baseline formats: the former NGSIv2 in use by currently operational FIWARE Context Brokers,
such as Orion, and the oneM2M format, currently operaitonal in Mobius, openMTC, and others
oneM2M brokers. We shall support bidirectional conversion, that is from NGSIv2 (or oneM2M)
to NGSI-LD neutral format, and from NGSI-LD neutral format to NGSIv2 (or oneM2M).

We observe that a ThingVisor’s developer knows the format and the semantic of the data (x)
she is fetching from the Root Data Domain. Hence, she can implement her custom x→NGSI-
LD mapping strategy inside the ThingVisor, and different ThingVisors can even use different
mapping strategies while having the same output format, that is NGSI-LD. Consequently, there
is no need for specifying a mapping strategy from the Root Data Domain to NGSI-LD, given
that NGSI-LD should be able to represent whatever information coming from the Root Data
Domain.

Conversely, developers of vSilo flavours have to devise controllers able to automatically
convert data coming from any ThingVisor. Consequently, the conversion strategy from the
NGSI-LD neutral format to the format used in the specific vSilo flavour (e.g.: oneM2M, NGSIv2)
must be specified. Accordingly, in the following sections we present our first round of design
decisions concerning translation between formats and we give priority to the mappings from
NGSI-LD to FIWARE/oneM2M, i.e. those used by vSilo controllers.

6.5.1 Mapping between NGSI and NGSI-LD

We have already mentioned in section 2.2.2 that NGSI has evolved into NGSI-LD, allowing
for a richer representation of information. It may thus seem somewhat obvious that mapping
from NGSI to NGSI-LD is straightforward, while the reverse can be more challenging. This
is not always the case. For instance, in NGSIv2 there is no constructs to indicate explicit
relationships between Entities. But, in time, to compensate for this lack of cross-referencing
between objects, FIWARE introduced the convention that the name of attributes representing a
relationship should start with ”ref”. NGSI-LD fixes this, by introducing explicit Relationships.
Hence a well-thought mapping algorithm must implement a non-trivial amount of intelligence,
and it should be able to correctly map ”ref” NGSIv2 attributes to NGSI-LD Relationship blocks.

Suppose we have the following NGSI Entity, which is information about a bike parking place
in Murcia, taken from their publicly available pool of data, served by the currently online Orion
Context Broker.

1 {
2 "descripcion": {
3 "metadata":{},
4 "type": "string",

5 "value": "Santo%20Domingo"

6 },
7 "geoposicion":{
8 "metadata":{},
9 "type": "coords",
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10 "value": "37.987769,-1.129766"

11 },
12 "id": "AparcamientoBicis:180",

13 "libres":{
14 "metadata":{},
15 "type": "number",

16 "value": "16"

17 },
18 "type": "Sensor"

19 }

The link http://telefonicaid.github.io/fiware-orion/api/v2/stable, section named
”Specification”, neatly describes the FIWARE NGSI data model for context information, a
simple information model based on the notion of context entities. The main elements of this
NGSIv2 data model are: context entities, attributes and metadata. For the sake of readability,
we summarize in the following the central notions from the above specification.

Each entity has an entity id. Furthermore, NGSI enables entities to have an entity type.
Entity types are semantic types that are intended to describe the type of thing represented by
the entity. For example, a context entity with id sensor1 could have the type temperature-
sensing-device. Attributes are properties of entities. For example, the current speed of a car
could be modeled as attribute current-speed of entity car1. Attributes have an attribute name,
an attribute type, an attribute value and metadata. The attribute name describes what kind
of property (of the entity) the attribute value represents. The attribute value contains the
actual data. Optional metadata describe properties of the attribute value like e.g. accuracy,
provider, or a timestamp. Normally, attribute types are informative and processed in an opaque
way. Nonetheless, the special attribute types DateTime (identifies dates, in ISO8601 format),
geo:point, geo:line, geo:box, geo:polygon and geo:json (have semantics related with entity loca-
tion) are used to convey a special meaning.

From the above description, it can be noticed that in NGSI, both the metadata and the
special attribute types are used to represent common information typically found in every at-
tribute. One of the goals for the NGSI-LD evolution has been to clean up these two different
methods for representing meta-information (timestamp, location, who is the provider of the val-
ues, etc.) that is common to most of the attributes regardless of the specific vertical application.
Thus, the concept of Property was introduced in NGSI-LD to subsume the attribute’s type and
attribute’s metadata, and a number of cross-domain properties has been defined (please see
section 6.2, specifically the Cross-Domain Ontology definition).

This gives birth to the mapping strategy described in table 5.
An example NGSI-LD entity equivalent to the previous NGSI entity, built by applying the

guidelines in table 5, is then the following:

1 {
2 "id":"urn:ngsi -ld:Sensor:AparcamientoBicis:180",

3 "type":"Sensor",

4 "descripcion":{
5 "type":"Property",

6 "value":"Santo%20Domingo"

7 },
8 "location":{
9 "type":"GeoProperty",
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Table 5: Guidelines for mapping between NGSI and NGSI-LD

NGSIv2 NGSI-LD

entity id entity id
entity type entity type
attribute blocks heuristics to decide whether the attribute is a property or

a relationship:
• if attribute name is prefixed by ”ref” then map to an
attribute block of the entity
• else map to a property block of the entity

attribute value • property value if mapping to a property
• relationship object if mapping to a relationship

attribute type information conveyed by the NGSI attribute type is:
• inferred automatically if type was a JSON standard

type
• encoded in the name of the property/relationship if

type was mapped to a cross-domain concept such as ”cre-
atetAt”, ”observedAt”, ”location”

attribute metadata create a sub-property only if not exploited for the main
property/relationship mapping

10 "value":"{\"type\":\" Point\", \" coordinates \":[37.987769,-1.1

29766]}",
11 "former -ngsi -attribute":{
12 "type":"Property",

13 "value":"\" geoposition \": {\" metadata \":{},\"type\":\"
coords \",\" value\":\"37.987769,-1.129766\"}"

14 }
15 },
16 "libres":{
17 "type":"Property",

18 "value":"16"

19 },
20 "@context":[

21 "http://uri.etsi.org/ngsi -ld/v1/ngsi -ld-core -context.jsonld",

22 "http:// example.org/murcia -context.jsonld"

23 ]

24 }

In the above transformation we see how the mapping algorithm should be able to infer that
the ”geoposition” attribute refers to a geographic position of the entity, by looking not only at
the name itself, but also at the type (”coords”) and most importantly at the value itself, and
by carrying out a sanity check on the numbers. Consequently, we are able to map the attribute
to a NGSI-LD-specific GeoProperty, by forming the correct GeoJSON construct at the value.

Similarly, we need to develop appropriate heuristics targeting NGSI metadata blocks that
carry information about timestamps or about owners or creators of the entities. The goal is to
be able to exploit as much as possible the Cross-Domain Ontology.
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Additionally, we have adopted a strategy to retain the original/former NGSI attributes,
embedded as sub-properties within the newly instantiated NGSI-LD properties (namely, the
”former-ngsi-attribute” property inside the ”location” property, which retains the original block
as a JSON-encoded string at the ”value” key). This strategy may be particularly useful for our
virtualization purposes, whenever the neutral format is then going to be re-mapped to the
output brokers, for instance to a NGSIv2 output broker. We would then be able to not loose
any information in the process. This is maximally important when we apply our heuristics in
mapping attributes to properties or relationships, as the process is potentially error-prone.

6.5.2 Mapping between NGSI-LD and oneM2M

In the following we investigate the mapping with oneM2M. Specifically, we are trying to design
a mapping strategy between oneM2M resources such as Application Entities, Containers and
ContentInstances), and NGSI-LD Entities.

Suppose we have the following NGSI-LD Entity, that comprises three Properties, where
@context is omitted for brevity:

1 {
2 "id": "urn:ngsi -ld:Sensor:AparcamientoBicis:180",

3 "type": "Sensor",

4 "descripcion": {
5 "type": "Property",

6 "value": "Santo%20Domingo"

7 },
8 "location":{
9 "type":"GeoProperty",

10 "value":"{\"type\":\" Point\", \" coordinates \":[37.987769,-1.1

29766]}"
11 },
12 "libres": {
13 "type": "Property",

14 "value": "16"

15 }
16 }

We started by evaluating the following two strategies, as a base for an automated algorithm,
that are both able to map an NGSI-LD Entity to a native oneM2M resource (please consult
section 2.2.1 for a brief recap on the oneM2M resource tree structure).

• Strategy 1: every NGSI-LD Entity is mapped to a different oneM2M Application Entity

• Strategy 2: every NGSI-LD Entity is mapped to a different Container within the same
oneM2M Application Entity

The first mapping principle is to consider each NGSI-LD Entity as an application on its own,
that has a fine-grained structure comprising several top-level Containers. Then, each Property
or Relationship of the original NGSI-LD Entity is mapped to a different top-level Container
resource of such oneM2M Application Entity. Consequently, property values (or relationship
objects) are mapped to ContentInstances of the respective top-level Container that represents
the property.
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Table 6: Guidelines for mapping between NGSI-LD and oneM2M

NGSI-LD oneM2M

entity top-level container
entity id top-level container resourceID
entity type top-level container labels
property/relationship sub-container
property/relationship name sub-container resourceName
property/relationship type sub-container labels
property value/relationship object content instance of the sub-container
sub-property/sub-relationship sub-sub-container (container nested

within sub-container)

The second mapping method is more coarse-grained, and it groups all NGSI-LD Entities
under one common NGSI-LD Application Entity. This means that top-level Containers now
represent NGSI-LD Entities, not Properties/Relationships. This strategy then exploits Con-
tainer nesting, hence using sub-container resources to represent Properties or Relationships, so
that each NGSI-LD Entity is considered as a top-level Container and be created, together with
all other entities, inside the networked oneM2M AE where they belong.

We can see that oneM2M is extremely flexible in the structuring of data sources. Nonethe-
less, different resource types come with different levels of overhead when creating them. For
instance, at creation time, Application Entities need to explicitly register themselves to the
higher-level resource that coordinates them, i.e. the Common Services Entity (CSE). This
is because Application Entities in oneM2M capture the concept of data producers (and con-
sumers), rather than the concept of the produced data items. Furthermore, each AE can be the
originator of a request to be granted a set of access operations (such as CREATE, RETRIEVE,
UPDATE, DELETE, DISCOVERY and NOTIFY), giving birth to a complex system of access
control policies for those Application Entities that are going to operate on certain Containers.

This is why we think Strategy 1 may be overkill in many practical use cases, and Straregy 2
is preferred for our mapping between NGSI-LD and oneM2M. In NGSI-LD, entities are passive
data items, that much better align to the Container concept of oneM2M, rather than the concept
of Application Entity.

Table 6 summarizes our preferred strategy.
This may, however, not always be the perfect choice because both standards allow for a

great amount of flexibility and there may be applications already in place that make certain
rigid assumptions about how the data producers and the data items are organized. Moreover,
applications will want to discover data items, based on attributes’ names and labels. Nonethe-
less, our first implementation of the mapper is going to be based on Strategy 2. We will collect
feedback from the use cases and keep other possibilities open.

The oneM2M standard allows discovery of resources based on a number of attributes, labels
and semantic descriptors, although it must be noted that not all of the existing oneM2M imple-
mentation, if any, as of today (March 2019), implement the discovery via semantic descriptors.
In our mapping strategy we are going to exploit labels as much as possible.

Concerning values of the NGSI-LD properties, they are always going to be mapped to
oneM2M resources of type ContentInstance. ContentInstances make no assumptions regarding
their content, and they behave as blackboxes, so that not much is done on their content, except
retrieving it. Most of the time the content is base64-encoded. This is the reason why our
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idea is to put the whole property into the content instance, including types, so that it can be
unboxed in a straightforward way, without loosing any information, for example whenever we
need to reverse map from oneM2M back to NGSI-LD. Furthermore, the type is mapped onto
the labels of the Container, too, in order to enable discovery by means of queries/filters on
the labels’ values. Similarly, oneM2M ContentInstances do not express metainformation about
the instance’s units or geographic position, essentially treating the data points as opaque. If
the system (or data producer) wants to specify complex metadata about oneM2M resources,
then the semanticDescriptor resource type is available. It enables attaching RDF triples to the
resources, and the oneM2M specification describes how to build queries and semantic filters
to discover resources based on the semantic descriptors. The ontologyRef attribute of the
semanticDescritpor is used for specifying what ontology is used as the basis for the semantic
content of a semantic descriptor.

In the example that follows, we see how it would be possible to exploit the (sub-)Container’s
semantic descriptor to capture the fact that the property of the original NGSI-LD entity concerns
its geographic location. Let’s refer to the example NGSI-LD entity we presented above, which
contains information coming from the Murcia bike parking place (a single vThing), and let’s
apply our mapping guidelines to it:

• an Application Entity is created and registered to the CSE of the Silo broker. The AE
resource name may be equal to the vThingID, e.g. ”BikeParking”. The AE is the contact
point for retrieving information about all bike parking places of Murcia. This strategy
avoids creating a huge number of AE resources

• ”id”:”AparcamientoBicis:180” (which is a specific parking place) → becomes a top-level
Container within the AE (i.e. every NGSI-LD Entity is mapped to a different top-level
Container)

• ”type”:”Sensor” → becomes a ”labels” of the top-level Container

• ”libres” property → spawns a sub-Container. It becomes the sub-Container’s name

• ”type”:”Property” of ”libres” → becomes labels of the ”libres” sub-Container

• ”value”:”16” → spawns a ContentInstance of the ”libres” sub-Container

• ”location” → another sub-Container

• it is inferred that ”location” refers to a geographic position, hence a semantic descriptor
of the ”location” sub-Container is created. RDF triples are inserted stating the fact that
the Container’s data concerns geographic positions or geometries

• ”descripcion” → another sub-Container

Also the other values become ContentInstances of their respective sub-Containers. It must
be noted that the whole JSON block of the ”location” Property:

1 {
2 "type":"GeoProperty",

3 "value":"{\"type\":\" Point\", \" coordinates \":[37.987769,-1.129

766]}"
4 }
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becomes the ContentInstance, so that no info is lost. This holds true for all properties/relation-
ships in the original NGSI-LD entity.

Basically this approach can be summarized as: every Property/Relationship of the NGSI-
LD Entity becomes a sub-Container; the values become ContentInstances, and the Entity itself
becomes the top-level Conbtainer.

It is possible to do query search&discovery, by exploiting the fact that we copy the names
to the labels. Whenever the mapping algorithm is able to infer complex data types, semantic
descriptors can additionally be created.

Figure 25 represents that mapping as resource tree, having one AE for all bikeparkings and
assuming that the CSE of the vSilo has name ”Murcia”, i.e. the tenant identifier. A containers
group could allow to query all the bikeparkings at once. This perspective is interesting from
the Murcia city point of view. However, it is not possible to a priori exclude that bikeparking
managers may prefer to have an alternative with one AE per bikeparking. We will plan a
first implementation of the mapping module following the preferred guidelines, and evaluate its
effectiveness agains the project’s available data and use cases.

Figure 25: oneM2M instantiation of the NGSI-LD bike parking entity
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7 System Architecture - Outlook on second release

The architecture presented in this deliverable includes all the key, main concepts such as
ThingVisor, Silo, Silo controller, pub/sub internal communication system and so forth. We
also considered FogFlow and ICN as development frameworks for ThingVisors. In this section,
we envisage some possible extensions for the second release of the architecture.

Currently, the architecture is meant to be deployed in a single datacenter. However, it
may be useful to move functions close to the data rather than vice-versa. For instance, let us
consider a ThingVisor that carries out face recognition. The ThingVisor receives the full HD
video stream from a camera located at the edge of the network. Accordingly, it is better to deploy
the ThingVisor at the edge of the network rather than in a central data center. The second
architecture release will consider the support of a distributed cloud system, up to device level
(fog computing). Regarding orchestration functions, evolved cloud platforms will be considered
including Kubernetes and/or ETSI MANO to foster exploitation of the VirIoT platform for 5G
providers. Indeed, 5G providers can be providers of VirIoT as well. As another extension of
the architecture, application of ICN in addition to the Pub/Sub system connecting ThingVisors
and Virtual Silos will be considered, in order to have more flexibility in the communication
among them.

Another evolution of the architecture will concern semantic aspects. Currently, ThingVisor
developers must know where to fetch information, and also tenants must know which Virtual
Thing to add to their virtual Silos, in terms of Virtual Thing identifier (vThingID). For the
second iteration on the design of architecture, we plan to introduce semantic discovery services,
which allow to ThingVisor developers to search sources of information through semantic queries.
Besides, tenants can add Virtual Things to their virtual Silos just providing a semantic descrip-
tion of ”what” they want. For instance, a tenant can ask to add a ”sensor of temperature in
Rome”. Consequently, VirIoT will find the most suitable group of ThingVisors that provide
such kind of information. One of them is then actually attached to the tenant virtual Silo,
while the others are used in case of failure of the active one, i.e. the platform provides for the
migration from one ThingVisor to another for reliability purposes.

Moreover, the algorithms for data conversion to and from the neutral format will be more
formally defined, based on feedback from preliminary implementation.

Last but not least, the current release of the system architecture does not consider security
aspects. In the second release, we will handle security issues, including authorization and
authentication of the users, of system components and of data. As an example, we would have
to deal with how to verify the authenticity of control and data messages distributed in the
pub/sub system, and on how to control access to system elements (virtual Silos) from the user
and/or from another system element.
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8 Conclusions

Current IoT cloud solutions usually offer virtual data hubs for collecting, analyzing and dis-
tributing information coming from things owned by the user. In this deliverable we presented
VirIoT , the Fed4IoT platform that has a different virtualization goal: to offer virtual things
to the users lacking them, alleviating developers of the burden of buying and deploying IoT
devices and services needed by their applications. Such virtual things are obviously based on
real things, just like virtual machines are based on real hardware. We think that such a concept
of sharing the IoT hardware infrastructure is not so much explored in the IoT (cloud) arena,
thus we suggest this project is a step forward in a stimulating and promising direction.
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