
Federating IoT and cloud infrastructures to provide scalable and interoperable Smart
Cities applications, by introducing novel IoT virtualization technologies

EU Funding: H2020 Research and Innovation Action GA 814918; JP Funding: Ministry of

Internal Affairs and Communications (MIC)

Deliverable 3.1

Cloud Oriented Services - First Release

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 1 of 85

Ref. Ares(2019)7387315 - 30/11/2019

Deliverable Type: Report
Deliverable Number: D3.1

Contractual Date of Delivery to the EU: 30.11.2019
Actual Date of Delivery to the EU: 30.11.2019

Title of Deliverable: Cloud Oriented Services - First Re-
lease

Work package contributing to the Deliverable: WP3
Dissemination Level: Public

Editor: Michio Honda, Hajime Tazaki
Author(s): Michio Honda and Bin Cheng

(NEC); Hajime Tazaki (IIJ); An-
drea Detti, Ludovico Funari and
Giuseppe Tropea (CNIT); Juan
Andrs Sanchez, Juan Antonio
Martinez and Antonio Skarmeta
(OdinS); Hidenori Nakazato, Kenji
Kanai and Hidehiro Kanemitsu
(Waseda)

Internal Reviewer(s): Andrea Detti (CNIT)
Abstract: This deliverable reports the first

version of the Fed4IoT cloud-
oriented services

Keyword List: IoT virtualization, Light Compute
Virtualization, ICN, FogFlow

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 2 of 85

Disclaimer

This document has been produced in the context of the EU-JP Fed4IoT project which
is jointly funded by the European Commission (grant agreement n 814918) and Ministry
of Internal Affairs and Communications (MIC) from Japan. The document reflects only
the author’s view, European Commission and MIC are not responsible for any use that
may be made of the information it contains

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 3 of 85

Table of Contents

Fed4IoT Glossary 9

1 Introduction 10
1.1 Purpose of the Document . 10
1.2 Executive Summary . 10
1.3 Quality Review . 10

2 The Fed4IoT Virtualization Stack 12

3 IoT Cloud-Oriented Services 14
3.1 VirIoT REST API and Command Line Interface 15

3.1.1 Registration . 15
3.1.2 Unregistration . 16
3.1.3 Login . 17
3.1.4 Logout . 18
3.1.5 Create Virtual Silo . 19
3.1.6 Destroy Virtual Silo . 20
3.1.7 Add Virtual Thing . 21
3.1.8 Delete Virtual Thing . 22
3.1.9 Add ThingVisor . 23
3.1.10 Delete ThingVisor . 24
3.1.11 Add Flavour . 25
3.1.12 Delete Flavour . 26
3.1.13 Inspect Tenant . 26
3.1.14 Inspect Virtual Silo . 27
3.1.15 Inspect ThingVisor . 28
3.1.16 List ThingVisors . 29
3.1.17 List Flavours . 30
3.1.18 List Virtual Silos . 31

3.2 VirIoT Internal Procedures and Data Flow 32
3.2.1 User management procedures . 32
3.2.2 Virtual Silo Procedures . 33
3.2.3 ThingVisor procedures . 36
3.2.4 SystemDB . 39

3.3 Developed ThingVisors and Virtual Silo Flavours 40
3.3.1 ThingVisors . 43
3.3.2 Virtual Silo Flavours . 50

4 ThingVisor Advanced Orchestration and Development Tools 53
4.1 FogFlow . 53

4.1.1 System Overview . 53
4.1.2 Intent-based Programming Model 54
4.1.3 Context Aware Service Orchestration 56
4.1.4 FogFlow-based ThingVisor . 57

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 4 of 85

4.2 Service Function Chaining . 58
4.2.1 Implementation of Service Functions 60
4.2.2 Deployment and Selection . 60
4.2.3 Communications Mechanisms for Service Function Chaining . . . 62
4.2.4 Performance Evaluation . 64

5 Flexible Compute Virtualization Architecture 69
5.1 Server level compute architecture . 70
5.2 Unikraft . 72

5.2.1 Support for Containers . 74
5.3 Linux Kernel Library . 75

5.3.1 Background . 75
5.3.2 Existing Solutions . 76
5.3.3 Linux Kernel Library: Rich Feature-set with Specialized Kernel . 77
5.3.4 Docker Integration . 78
5.3.5 Preliminary Evaluations . 79
5.3.6 Further Steps . 81

6 Conclusion 82

Bibliography 83

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 5 of 85

List of Figures

1 Fed4IoT Architectural Framework . 10
2 Fed4IoT Virtualization Stack . 12
3 Control commands exchanged among VirIoT entities 32
4 Register/Unregister procedure . 33
5 Login/Logout procedure . 34
6 Add Flavour procedure . 35
7 Create vSilo procedure . 36
8 Destroy vSilo procedure . 37
9 Add ThingVisor procedure . 38
10 Add vThing procedure . 39
11 Delete vThing procedure . 40
12 Delete ThingVisor procedure . 41
13 oneM2M ThingVisor . 45
14 Generic NGSIv2 Greedy ThingVisor . 46
15 Smart Parking ThingVisor . 48
16 Aggregated Parking Value ThingVisor 49
17 OpenWeatherMap ThingVisor . 50
18 Generic vSilo operations . 51
19 System Overview of FogFlow . 53
20 Service Model in FogFlow . 54
21 Intent Model . 55
22 Three key elements to program an IoT service in FogFlow 55
23 FogFunction as a simple case of service topology in FogFlow 56
24 Data-driven orchestration . 57
25 FogFlow in VirIoT . 59
26 Service Function Chaining in VirIoT . 60
27 Procedures of SF-CUV algorithm. 61
28 Original NDN Packet Format . 63
29 Extended Interest Packet Format . 63
30 Example of Function Chaining . 64
31 Experiment Environment . 65
32 Applied workflow structure. 66
33 Degree of SF sharing. 67
34 Comparisons of no SF pre-deployment. 67
35 Comparisons of SF pre-deployment. 68
36 Flexible Compute Virtualization Architecture, server level 72
37 Unikraft Concepts. 73
38 Unikraft Container Image Configuration. 75
39 Unikraft Network Configuration. 76
40 Unikraft Application and Networking in Container Environment. 76
41 Host Networking Setup with Unikraft and Container. 77
42 Structure of LKL as a portable and reusable library of the Linux kernel. . 78
43 The duration of Python script execution from 30 measurement iterations

(with the mean values). 79

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 6 of 85

44 Conformance test results (IxANVL) for network protocol based on RFC
specifications (Pass=green, Failed=red/yellow). 80

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 7 of 85

List of Tables

1 Fed4IoT Dictionary . 9
2 Version Control Table . 11
3 Collections stored inside MongoDB . 43
4 Available ThingVisors . 44
5 Available vSilo Flavours . 51

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 8 of 85

Fed4IoT Glossary

Table 1 lists and describes terms relevant to this deliverable.

Term Definition

FogFlow An IoT edge computing framework that automatically orchestrates
dynamic data processing flows over cloud- and edge- based infras-
tructures. Used for ThingVisor development.

Flexible Compute Vir-
tualization

The Fed4IoT compute virtualizatin platform able to manage het-
erogeneous virtualization technologies (Docker, unikernel, etc.)
over cloud- and edge- based infrastructures. Used for deployment
of VirIoT components.

Information Centric
Networking

New networking technology based on named contents rather than
IP addresses. Used for ThingVisor development.

IoT Broker Software entity responsible for the distribution of IoT information.
For instance, Mobius, Orion ans Scorpio, can be considered as Bro-
kers of oneM2M, NGSI and NGSI-LD IoT platforms, respectively.

Neutral Format IoT data representation format that can be easily translated
to/from the different formats used by IoT brokers.

Real IoT System IoT system formed by real (as opposite to virtual) things whose
data is exposed trough a Broker.

System DataBase Database for storing system information.

ThingVisor System entity that implements Virtual Things.

VirIoT Fed4IoT platform providing Virtual IoT systems as a service.

Virtual Silo Isolated virtual IoT system formed by Virtual Things and a Broker.

Virtual Silo Controller Primary system entity working in a virtual Silo.

Virtual Silo Flavour Image of a Virtual Silo, e.g. a ”Mobius flavour” is related to a
Virtual Silo with Mobius broker, a ”MQTT flavour” refers to a
virtual silo with MQTT broker, etc.

Virtual Thing An emulation of a real thing that produces data obtained by pro-
cessing/controlling data coming from real things.

Tenant User that accesses the Fed4IoT VirIoT platform to develop IoT
applications.

Table 1: Fed4IoT Dictionary

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 9 of 85

1 Introduction

1.1 Purpose of the Document

This deliverable describes the Fed4IoT cloud-oriented services that are positioned, within
the whole Fed4IoT architectural framework, as shown in Figure 1.

Figure 1: Fed4IoT Architectural Framework

1.2 Executive Summary

This deliverable presents the first release of Fed4IoT cloud-oriented services. Currently,
only a part of them has been implemented, and the related release is internally num-
bered as v2.2. We provide details about the Fed4IoT IoT Virtualization Platform named
VirIoT, already introduced in D2.2. We present optimization and design activities con-
cerning specific core components, such as the ThingVisor. Finally, we describe alternative
Compute Virtualization solutions to Docker to address either running low-power devices
or specific application needs. The whole picture of these activities forms the so-called
Fed4IoT virtualization stack shown in Figure 2.

1.3 Quality Review

The internal Reviewer responsible for this deliverable is Andrea Detti (CNIT).

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 10 of 85

Version Control Table

V. Purpose/Changes Authors Date

0.1 ToC Michio Honda (NEC) 03/11/2019

0.2 First contribution round ALL 20/11/2019

0.3 Last contribution round ALL 27/11/2019

0.4 Final review Andrea Detti (CNIT) 30/11/2019

Table 2: Version Control Table

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 11 of 85

2 The Fed4IoT Virtualization Stack

I
n
t
e
r
n
a
l I

n
fo

S
h
a
r
in

g

IoT Virtualization Platform

ThingVisor vSilo
vSiloThingVisor

System DB

Image
Repo/Store

IoT Cloud-Oriented ServicesVirIoT CLI

VirIoT REST API

Flexible Compute Virtualization

Linux Kernel
LibraryDockers

Compute
Virtualization
Orchestration

Master
Controller

VirIoT
development
tools

E
x
t
e
r
n
a
l
I
n
fo

 S
h
a
r
in

g

Other
external

platforms

Admin Tenant

Unikernel

Compute Virtualization Services

Compute Platform

Data Center

EdgeEdgeEdge

Compute
development
tools

Figure 2: Fed4IoT Virtualization Stack

Figure 2 shows the stack of Fed4IoT virtualization services. Starting from the top
of the figure we have the Fed4IoT IoT Cloud-Oriented Services, which offer IoT
System-as-a-Service, where an IoT system, namely a Virtual Silo, is an isolated environ-
ment receiving data items coming from a configurable set of Virtual Things, and this
information is exposed through a configurable IoT Broker inside the Virtual Silo. The
IoT Cloud-Oriented Services are implemented by the VirIoT platform, previously intro-
duced in D2.2 and now detailed in Section 3. VirIoT exposes a REST API and Command

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 12 of 85

Line Interface (CLI) to Administrators and Tenants, and also an External Info Sharing
interface to other IoT platforms that wish to federate their information with informa-
tion from VirIoT. Besides designing components proper of the VirIoT workflow, such
as Master Controller (the VirIoT orchestrator), ThingVisors, Silo Controllers, etc..., we
additionally offer VirIoT-tailored development tools (FogFlow and ICN Service Function
Chaining) that simplify the development and deployment of complex and distributed
ThingVisors. These VirIoT development tools are described in Section 4.

The VirIoT platform exploits compute virtualization services to deploy and run its
components. In turn, compute virtualization services are based on a distributed cloud/edge
computing platform. The compute virtualization architecture is flexible, i.e. its orches-
trator can use different virtualization technologies to best fit the needs and constraints of
the service and of the host device. For instance, for plain devices such as servers, Docker
is the reference virtualization technology. For low-power devices (e.g. Raspberry PI)
deployed at the network edge, the orchestrator can use the other innovative technologies
the project is exploring such as Linux Kernel Libraries and Unikernels, which can be built
by using Unikraft tools. Compute Virtualization Technologies are described in Section 5.

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 13 of 85

3 IoT Cloud-Oriented Services

Fed4IoT cloud-oriented services are implemented by the IoT virtualization platform
named VirIoT, whose concepts have been presented in D2.2. VirIoT is made by sev-
eral components and exploits the information coming from real IoT infrastructures to
provide tenants with Virtual Silos (vSilos), which are virtual isolated IoT Systems re-
ceiving data generated by Virtual Things (vThings), exposed through an IoT broker
technology of choice (e.g. the oneM2M Mobius server, the NGSIv2 Orion broker devel-
oped by FIWARE, or the new Scorpio NGSI-LD Context Broker by NEC, etc.) by the
Tenant’s applications.

Virtual Things are IoT data producers, which emulate the behaviour of real things.
For instance we can have a real camera infrastructure connected to the VirIoT system, and
a virtual ”person counter sensor” (virtual thing), counting real-time number of persons
in a room, thus producing ”virtual” measurements that are generated by processing data
coming from the real camera infrastructure. Within the VirIoT architecture, Virtual
Things are implemented by specific components named ThingVisors, and one ThingVisor
can implement more than one Virtual Thing.

A tenant can create a Virtual Silo and add to it (i.e. connect to it) its preferred set
of Virtual Things, among the ones offered by the VirIoT. Virtual Silos differ each other
both by the set of connected Virtual Things and by the IoT broker technology they use
to expose them. When a tenant creates a Virtual Silo, the VirIoT platform runs a new
instance of a so called Virtual Silo Flavour, which is an empty image of the Virtual Silo,
only containing the specific IoT broker server and related Virtual Silo Controller. Such
controller is a local agent interacting with the rest of the VirIoT architecture components
(Master Controller, ThingVisors, etc.). As soon as a Virtual Silo runs, the tenant can
connect to it the preferred Virtual Things.

As reported in D2.2, the VirIoT architecture is formed by the following components:

1. Master Controller: the main orchestration component, exposing a REST API to the
tenants and to the administrator, and in turn interacting with other components, to
manage ThingVisors and Virtual Silos. A python CLI, too, can be used to interact
with the Master controller.

2. ThingVisors: a pluggable set of components, each of them implementing one or
more Virtual Things.

3. Internal information sharing system: a data distribution system used to transfer,
within the platform boundaries, the control messages and the data generated by
the Virtual Things.

4. External information sharing system: a data distribution system used to transfer
the data of Virtual Things that the VirIoT platform wishes to share with external
IoT platforms.

5. Image repositories: image stores (e.g. DockerHub) hosting base images of Virtual
Silos (Flavours) and ThingVisors.

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 14 of 85

6. Virtual Silos: instances of a Virtual Silo Flavour that include a Virtual Silo Con-
troller and an IoT broker, and that receive and exposes data of a set of Virtual
Things, as selected by the tenant.

7. System DB: database containing system information, mainly used to make the
system components as much as possible stateless.

8. Compute Virtualization Layer: a compute virtualization architecture, exposing ser-
vices for deploying different types of compute images (Docker, Unikernel, etc.) on a
distributed and heterogeneous cloud platform formed by central and edge resources.

The VirIoT components are devised to run on cloud/edge/fog computing platforms,
including 5G NFV platforms.

In what follows we describe the status of VirIoT components at the latest stable release
(v2.2). Current implementation of the architecture is centralized and based on Docker
container. The next release will be distributed on edge/fog nodes. Accordingly, we also
report in this deliverable the advancements in light Compute Virtualization Technology
(Unikraft, Linux Kernel Library) the project is proposing to enable deployment of the
VirIoT components on edge/fog low-power devices, and finally we presents some tools
for developing and orchestrating the internal components of complex and distributed
ThingVisors.

3.1 VirIoT REST API and Command Line Interface

The following several sections give full details of all API functionality of the VirIoT
platform, available both through a RESTful and through a command line option.

3.1.1 Registration

It registers a new user to the system. The administrator sends a request with a new
triplet that needs to be registered, formed as the new user ID, the password and its role.
A new user can either be registered as an admin or as a regular user.

Needed privileges: Administrator.

3.1.1.1 CLI

f4i.py register [-h] [-c CONTROLLERURL] [-u USERID] [-p PASSWORD] [-r

ROLE]

CLI Example

python3 f4i.py register -c http://127.0.0.1:8090 -u tenant1 -p password -

r user

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 15 of 85

3.1.1.2 REST API

POST register

127.0.0.1:8090/register

HEADERS:

Authorization: “Bearer” + 〈JSONWebToken〉
Accept: application/json

Content-Type: application/json

RESPONSE:

{

"message":registration_status

}

3.1.2 Unregistration

It unregister the user, deleting the credentials from the SystemDB.
Needed privileges: Administrator.

3.1.2.1 CLI

f4i.py unregister [-h] [-c CONTROLLERURL] [-u USERID]

CLI Example

python3 f4i.py unregister -c http://127.0.0.1:8090 -u tenant1

3.1.2.2 REST API

POST unregister

127.0.0.1:8090/unregister

HEADERS:

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 16 of 85

Authorization: “Bearer” + 〈JSONWebToken〉
Accept: application/json

Content-Type: application/json

RESPONSE:

{

"message":unregistration_status

}

3.1.3 Login

It lets a user login into the system. The Master Controller checks if the information given
by the users are correct. In order to do so, it validates them with the information fetched
from the SystemDB. If the operation is successful, the user receives an access token

that allows the user to perform subsequent CLI commands.
Needed privileges: Regular user.

3.1.3.1 CLI

f4i.py login [-h] [-c CONTROLLERURL] [-u USERID] [-p PASSWORD]

CLI Example

python3 f4i.py login -c http://127.0.0.1:8090 -u tenant1 -p password

3.1.3.2 REST API

POST login

127.0.0.1:8090/login

HEADERS:

Authorization: “Bearer” + 〈JSONWebToken〉
Accept: application/json

Content-Type: application/json

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 17 of 85

RESPONSE:

{

"message":login_status

}

3.1.4 Logout

It logs out a user from the system. The access token of the specified user is added to a
local black-list, that will be used to deny a further login using the aforementioned token.

Needed privileges: Regular user.

3.1.4.1 CLI

f4i.py logout [-h] [-c CONTROLLERURL]

CLI Example

python3 f4i.py logout -c http://127.0.0.1:8090

3.1.4.2 REST API

POST logout

127.0.0.1:8090/logout

HEADERS:

Authorization: “Bearer” + 〈JSONWebToken〉
Accept: application/json

Content-Type: application/json

RESPONSE:

{

"message":logout_status

}

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 18 of 85

3.1.5 Create Virtual Silo

It creates a new Virtual Silo, unique for each tenant, with the characteristics and resources
specified by the chosen flavour (default: Mobius-base-f). If debug mode is enabled, it
will store information only in the SystemDB. This command will return the private IP
address of the vSilo broker, the port to be used for accessing it and the port mapping by
which it is possible to access the broker using the public IP address of the platform.

Needed privileges: Administrator.

3.1.5.1 CLI

f4i.py create-vsilo [-h] [-c CONTROLLERURL] [-s VSILONAME] [-t TENANTID]

[-f FLAVOURNAME] [-d DEBUG_MODE]

CLI Example

python3 f4i.py create-vsilo -c http://127.0.0.1:8090 -t tenant1 -f Mobius

-base-f -s Silo1

3.1.5.2 REST API

POST siloCreate:

127.0.0.1:8090/siloCreate

HEADERS:

Authorization: “Bearer” + 〈JSONWebToken〉
Accept: application/json

Content-Type: application/json

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 19 of 85

RESPONSE:

{

"creationTime":creation_time,

"tvDescription":tv_description,

"containerID":container_id,

"thingVisorID":tv_id,

"imageName":tv_img_name,

"ipAddress":ip_address,

"debug_mode":debug_mode,

"vThings":v_things,

"params":tv_params,

"MQTTDataBroker":mqtt_data_broker,

"MQTTControlBroker":mqtt_control_broker,

"port":exposed_ports,

"IP":floating_public_IP,

"status":status

}

3.1.6 Destroy Virtual Silo

It deletes the unique, previously created Virtual Silo associated to the user. The tenant
container will be deleted, as well as any data related to the user.

Needed privileges: Administrator.

3.1.6.1 CLI

f4i.py destroy-vsilo [-h] [-c CONTROLLERURL] [-t TENANTID] [-s VSILONAME]

[-f]

CLI Example

python3 f4i.py destroy-vsilo -c http://127.0.0.1:8090 -t tenant1 -s Silo1

3.1.6.2 REST API

POST siloDestroy

127.0.0.1:8090/siloDestroy

HEADERS:

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 20 of 85

Authorization: “Bearer” + 〈JSONWebToken〉
Accept: application/json

Content-Type: application/json

RESPONSE:

{

"force":force_condition,

"tenantID":tenant_id,

"vSiloName":v_silo_id"

}

3.1.7 Add Virtual Thing

It adds a new Virtual Thing to the indicated Virtual Silo. The vThing is created with
the specified ID and it is associated to the tenant. It will fail if the silo does not exist.

Needed privileges: Administrator.

3.1.7.1 CLI

python3 f4i.py add-vthing -c <ControllerURL> -t <TenantID> -s <vSiloName>

-v <vThingID>

CLI Example

python3 f4i.py add-vthing -c http://127.0.0.1:8090 -t tenant1 -s Silo1 -v

weather/Tokyo_temp

3.1.7.2 REST API

POST addVThing

127.0.0.1:8090/addVThing

HEADERS:

Authorization: “Bearer” + 〈JSONWebToken〉
Accept: application/json

Content-Type: application/json

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 21 of 85

RESPONSE:

{

"tenantID":tenant_id,

"vThingID":v_thing_id,

"creationTime":creation_time,

"vSiloID":v_silo_id

}

3.1.8 Delete Virtual Thing

It deletes the Virtual Thing from the associated vThing of the tenant specified by its ID.
Needed privileges: Administrator.

3.1.8.1 CLI

f4i.py del-vthing [-h] [-c CONTROLLERURL] [-t TENANTID] [-s VSILONAME] [-

v VTHINGID]

CLI Example

python3 f4i.py del-vthing -c http://127.0.0.1:8090 -t tenant1 -s Silo1 -v

weather/Tokyo_temp

3.1.8.2 REST API

POST deleteVThing

127.0.0.1:8090/deleteVThing

HEADERS:

Authorization: “Bearer” + 〈JSONWebToken〉
Accept: application/json

Content-Type: application/json

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 22 of 85

RESPONSE:

{

"tenantID":tenant_id,

"vSiloName":v_silo_id,

"vThingID":v_thing_id

}

3.1.9 Add ThingVisor

It adds a ThingVisor. The administrator can add a new ThingVisor from an image and
a list of parameters written in JSON. It returns the ID of the newly added ThingVisor.

Needed privileges: Administrator.

3.1.9.1 CLI

f4i.py add-thingvisor [-h] [-c CONTROLLERURL] [-i IMAGENAME] [-n NAME] [-

p PARAMS] [-d DESCRIPTION] [--debug DEBUG_MODE]

CLI Example

python3 f4i.py add-thingvisor -c http://127.0.0.1:8090 -i fed4iot/v-

weather-tv:2.2 -n weather -p "{'cities':['Rome', 'Tokyo','Murcia','

Grasse','Heidelberg'], 'rate':60}" -d "Weather ThingVisor"

3.1.9.2 REST API

POST addThingVisor

127.0.0.1:8090/addThingVisor

HEADERS:

Authorization: “Bearer” + 〈JSONWebToken〉
Accept: application/json

Content-Type: application/json

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 23 of 85

RESPONSE:

{

'thingVisorID':thingvisor_id

}

3.1.10 Delete ThingVisor

It deletes a ThingVisor. In this way it will get rid of any information about the specified
ThingVisor from the SystemDB.

Needed privileges: Administrator.

3.1.10.1 CLI

f4i.py del-thingvisor [-h] [-c CONTROLLERURL] [-n NAME] [-f]

CLI Example

python3 f4i.py del-thingvisor -c http://127.0.0.1:8090 -n weather

3.1.10.2 REST API

POST deleteThingVisor

127.0.0.1:8090/deleteThingVisor

HEADERS:

Authorization: “Bearer” + 〈JSONWebToken〉
Accept: application/json

Content-Type: application/json

RESPONSE:

{

'thingVisorID':thingvisor_id

}

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 24 of 85

3.1.11 Add Flavour

It adds a new flavour to the database. The administrator specifies the new Flavour ID
as well as its parameters. In particular, the operation is carried on if the image for the
new flavour exists in the registered image repositories, saving the flavour status in the
SystemDB, otherwise, the operation is cancelled by the Master Controller.

Needed privileges: Administrator.

3.1.11.1 CLI

f4i.py add-flavour [-h] [-c CONTROLLERURL] [-f FLAVOURID] [-s

FLAVOURPARAMS] [-i IMAGENAME] [-d DESCRIPTION]

CLI Example

python3 f4i.py add-flavour -c http://127.0.0.1:8090 -f Mobius-base-f -s

Mobius -i fed4iot/mobius-base-f:2.2 -d "silo with a oneM2M Mobius

broker"

3.1.11.2 REST API

POST addFlavour

127.0.0.1:8090/addFlavour

HEADERS:

Authorization: “Bearer” + 〈JSONWebToken〉
Accept: application/json

Content-Type: application/json

RESPONSE:

{

"flavourID":flavour_id

}

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 25 of 85

3.1.12 Delete Flavour

It deletes a flavour. It will reverse the operation seen in the previous Section 3.1.11,
updating the information about the flavour specified by the command, deleting the stored
data in the SystemDB.

Needed privileges: Administrator.

3.1.12.1 CLI

f4i.py del-flavour [-h] [-c CONTROLLERURL] [-n FLAVOURID]

CLI Example

python3 f4i.py del-flavour -c http://127.0.0.1:8090 -n Mobius-base-f

3.1.12.2 REST API

POST deleteFlavour

127.0.0.1:8090/deleteFlavour

HEADERS:

Authorization: “Bearer” + 〈JSONWebToken〉
Accept: application/json

Content-Type: application/json

RESPONSE:

{

"flavourID":flavour_id

}

3.1.13 Inspect Tenant

It dumps information about a tenant. In particular, it will print all the information about
the vSilos and vThings associated to the specified tenant ID.

Needed privileges: Administrator.

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 26 of 85

3.1.13.1 CLI

f4i.py inspect-tenant [-h] [-c CONTROLLERURL] [-t TENANTID]

CLI Example

python3 f4i.py inspect-tenant -t tenant1

3.1.13.2 REST API

POST inspectTenant

127.0.0.1:8090/inspectTenant

HEADERS:

Authorization: “Bearer” + 〈JSONWebToken〉
Accept: application/json

Content-Type: application/json

RESPONSE:

{

'vSilos':v_silo_description,

'vThings':v_thing_id_description

}

3.1.14 Inspect Virtual Silo

It prints information about the Virtual Silos. In particular, it will print the description
of the vSilo as well as its Virtual Things.

Needed privileges: Administrator.

3.1.14.1 CLI

f4i.py inspect-vsilo [-h] [-c CONTROLLERURL] [-v VSILOID]

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 27 of 85

CLI Example

python3 f4i.py inspect-vsilo -c http://127.0.0.1:8090 -v tenant1_Silo1

3.1.14.2 REST API

POST inspectVirtualSilo

127.0.0.1:8090/inspectVirtualSilo

HEADERS:

Authorization: “Bearer” + 〈JSONWebToken〉
Accept: application/json

Content-Type: application/json

RESPONSE:

{

'vSilos':v_silo_description,

'vThings':v_thing_id_description

}

3.1.15 Inspect ThingVisor

It prints out a description of the requested ThingVisor ID.
Needed privileges: Administrator.

3.1.15.1 CLI

f4i.py inspect-thingvisor [-h] [-c CONTROLLERURL] [-v THINGVISORID]

CLI Example

python3 f4i.py inspect-thingvisor -c http://127.0.0.1:8090 -v weather

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 28 of 85

3.1.15.2 REST API

POST inspectThingVisor

127.0.0.1:8090/inspectThingVisor

HEADERS:

Authorization: “Bearer” + 〈JSONWebToken〉
Accept: application/json

Content-Type: application/json

RESPONSE:

{

"thingVisorID":thingvisor_id_description

}

3.1.16 List ThingVisors

It prints the information about the ThingVisors. In particular, it will dump all the details,
including the parameters passed by the add command, as well as the vThings associated
to the ThingVisors.

Needed privileges: Administrator.

3.1.16.1 CLI

f4i.py list-thingvisors [-h] [-c CONTROLLERURL]

CLI Example

python3 f4i.py list-thingvisors -c http://127.0.0.1:8090

3.1.16.2 REST API

GET listThingVisors

127.0.0.1:8090/listThingVisors

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 29 of 85

HEADERS:

Authorization: “Bearer” + 〈JSONWebToken〉
Accept: application/json

Content-Type: application/json

RESPONSE:

{

"thingVisorDescription":thing_visor_description

}

3.1.17 List Flavours

It lists all the flavours saved inside SystemDB, previously created using the command in
Section 3.1.11.

Needed privileges: Regular user.

3.1.17.1 CLI

f4i.py list-flavours [-h] [-c CONTROLLERURL]

CLI Example

python3 f4i.py list-flavours -c http://127.0.0.1:8090

3.1.17.2 REST API

GET listFlavours

127.0.0.1:8090/listFlavours

HEADERS:

Authorization: “Bearer” + 〈JSONWebToken〉
Accept: application/json

Content-Type: application/json

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 30 of 85

RESPONSE:

{

"flavourDescription":flavour_description

}

3.1.18 List Virtual Silos

It interrogates the SystemDB to dump all the details about the Virtual Silos saved.
Needed privileges: Administrator.

3.1.18.1 CLI

f4i.py list-vsilos [-h] [-c CONTROLLERURL]

CLI Example

python3 f4i.py list-vthings -c http://127.0.0.1:8090

3.1.18.2 REST API

GET listVirtualSilos

127.0.0.1:8090/listVirtualSilos

HEADERS:

Authorization: “Bearer” + 〈JSONWebToken〉
Accept: application/json

Content-Type: application/json

RESPONSE:

{

"vSiloDescription":v_silo_description

}

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 31 of 85

3.2 VirIoT Internal Procedures and Data Flow

This section describes the procedures and the related internal signaling that support
both the management operations described in section 3.1 and the internal data flows
that deliver the data.

Figure 3: Control commands exchanged among VirIoT entities

3.2.1 User management procedures

Figure 4 shows the register procedure used to insert a user in the VirIoT system. At the
bottom of each figure, we will show the protocols used among the involved entities. We
assume two possible roles for a user: Administrator or Tenant.

During the register procedure the Admin sends a register request (HTTPs POST) to
the Master Controller using the /register REST resource, including JSON information
such as userID, password, role that are related to the user the Admin is registering.
Moreover, the Admin sends her access token (a JSON Web Token - JWT) in the Auth
header of the HTTP POST. In this and next figures, we use curly brackets to indicate
JSON content and we will use the symbol # to indicate a generic value of the key. The
Master Controller verifies the validity of the access token and consequently stores user

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 32 of 85

Figure 4: Register/Unregister procedure

information in the System DB, currently MongoDB. Only the HASH of the password
is actually stored in the DB, so that only the user knows her real password. Figure 4
also shows the unregister procedure that is very similar, except that here the Master
Controller removes user information from the System DB.

Figure 5 shows the login procedure that is used by a user (e.g. a tenant) to get her
access token. The user sends her credentials through HTTPs to the REST /login

resource. The Master Controller accesses the System DB to fetch user info, then verifies
the password HASH and, if the verification is successful, it sends back to the user her
access token that will be used within subsequent procedures for authentication pur-
poses. Figure 5 also shows the logout procedure in which the access token of the user
is inserted in a local black-list, thus it can no longer be used.

3.2.2 Virtual Silo Procedures

This section reports procedures related to the creation and removal of a Virtual Silo
(vSilo). We remind that a vSilo starts as an instance of a ”void” Virtual Silo image that
we named Flavour. A vSilo is deployed exploiting the service of a Compute Virtualization
Layer, such as Docker/Kubernetes. In these specific cases a Flavour is a Docker image,
and a vSilo is a Container/Pod. Besides Docker technology, other Light Compute Vir-
tualization Technologies are under study as reported in section 5. However the current
architecture version (V2.2) is centralized and based on Docker.

Figure 6 shows the procedure used by the Admin to add a Flavour to the VirIoT
system. The Admin uses the /addFlavour REST resource to transfer information of the
Flavour, such as description, image name (a URL), flavour identifier, etc. The Master

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 33 of 85

Figure 5: Login/Logout procedure

Controller register this information in the System DB, by setting the Flavour status
as PENDING. Immediately, it sends back an HTTP 201 OK to the Tenant to quickly
release the connection. We used such ”transient” statuses in many other procedures
to quickly disconnect the HTTP client, hence avoiding it to stay connected for many
seconds, especially for those procedures that require long backend operations, such as the
download of a Docker image. Thereafter, the Master Controller checks the availability
of the image on the registered image repositories (e.g. DockerHub or local repo); if the
image exists, the Master Controller changes the status to READY, otherwise, it cancels
the pending entry in the System DB. Figure 6 also shows the delete flavour procedure in
which the Master Controller removes flavour data from the System DB.

Figure 7 shows how a Tenant can create a Virtual Silo (vSilo). The Tenant sends
to the Master Controller some information such as the identifier of the vSilo flavour to
be used as the base image and the name she wishes to use for the Virtual Silo. The
Master Controller registers the information of the new Virtual Silo in the System DB
and sets the status as PENDING. Thereafter, it requests to the Compute Virtualization
Layer to deploy the instance of the vSilo. The Compute Virtualization Layer downloads
the related image (Flavour) from the Repository and runs a new instance of it. When
the deployment is complete the Master Controller stores in the system DB the vSilo
configuration information, such as the private IP address, the exposed port, the public
IP address, the instance ID (e.g. Docker container name), etc. and set vSilo status as
RUNNING.

Figure 8 shows how a Tenant can destroy a Virtual Silo (vSilo). The Tenant sends
to the Master Controller information such as the identifier of the vSilo to be destroyed.
The Master Controller gets the vSilo information from the System DB, sets the status as

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 34 of 85

Figure 6: Add Flavour procedure

STOPPING and replies to the user with an HTTP 201 OK. Then, the Master Controller
asks the vSilo Controller to start the destroy procedure. This message is a VirIoT control
command delivered through the Internal Info Sharing VirIoT sub-system, which is de-
veloped by WP4 (see deliverables D4.x). In the current release (v2.2), the Internal Info
Sharing is based on MQTT data and control topics, as reported in D4.1. However, many
solutions are possible because the devised data and control messages are self-consistent
and self-standing, i.e. the related actions solely depend on their own contents. Figure 3
shows the list of all VirIoT control commands, that will be used in the following.

When the vSilo Controller receives the destroyVSilo command it friendly closes all
possible relations with external sources and then confirms to the Master Controller that
it is ready to be destroyed with a destroyVSiloAck command. At the reception of this
message, the Master Controller requests to the Compute Virtualization Layer to destroy
the vSilo instance. When the destroy operation is completed, the Master Controller
removes vSilo information from the System DB.

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 35 of 85

Figure 7: Create vSilo procedure

3.2.3 ThingVisor procedures

Figure 9 shows the procedure used by the Admin to add a ThingVisor to the VirIoT
system. The Admin contacts the Master Controller through the /addThingVisor REST
resource and sends ThingVisor information such as a description, its image name, the
parameters that can be used to customize the added ThingVisor (e.g. info about the real
sources that should be contacted by the ThingVisor), etc. The Master Controller registers
ThingVisor information in the SystemDB, sets the status as PENDING, then sends back
an HTTP 201 OK to the Admin. Thereafter, the Master Controller asks the Compute
Virtualization Layer to deploy an instance of the ThingVisor. The Virtualization Layer
fetches the image from the repository and runs it. In turn, the Master Controller updates
the ThingVisor information in the System DB by setting its status to RUNNING.

A ThingVisor may manage more than one Virtual Things (vThings), which are not
known apriori by the Master Controller. For this reason, when the ThingVisor starts, it
sends to the Master Controller the createVThing command, which includes the list of
vThings it is handling. At the reception of this message, the Master Controller updates
the system DB with vThings’ information. The running ThingVisor then starts to pro-

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 36 of 85

Figure 8: Destroy vSilo procedure

duce the data items (NGSI-LD format) of the managed vThings and send them to the
interested vSilos by using the Internal Info Sharing System (see D4.x).

Figure 10 shows the procedure used by a Tenant to connect (add) a vThing to her
vSilo. The Tenant sends vThing and vSilo information to the Master Controller by using
the /addVThing REST resource. The Master Controller checks the existence of vThing
and vSilo, and then send the addVThing control command to the Controller of the vSilo.
The Controller configures the local broker of the vSilo, enables the reception of vThing
data (e.g. by subscribing to the related data topic in case of MQTT-based Internal Info
Sharing) and requests the latest data published by the vThing to the ThingVisor by using
the getContexRequest control command. Meanwhile, the Master Controller updates the
vSilo information on the System DB.

Figure 11 shows the procedure used by a Tenant to disconnect (delete) a vThing from
her vSilo. The Tenant sends vThing and vSilo information to the Master Controller by
using the /deleteVThing REST resource. The Master Controller checks the existence of
vThing and vSilo, updates System DB hence removing the vThing from the vSilo, and
then sends the delVThing control command to the Controller of the vSilo. The Controller

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 37 of 85

Figure 9: Add ThingVisor procedure

stops receiving vThing data and removes related entries from the local broker.
Figure 12 shows the procedure to remove a ThingVisor from the VirIoT system. The

Admin contacts the Master Controller by using the /deleteThingVisor REST resource
and passing the related ThingVisor ID. The Master Controller gets from the system
DB information about the vSilos that are connected to the vThings handled by the
ThingVisor, and sets the ThingVisor status as STOPPING. Then, the Master Controller
sends delVThing control commands to the interested vSilos, so that they can remove the
vThings of the ThingVisor from their brokers and stop receiving related data. Afterwards,
the Master Controller asks the ThingVisor to stop itself by using the destroyTV control
command. At the reception of this command, the ThingVisor revokes possible external
states (e.g. subscriptions with remote sources, etc.) and then confirms that it ready to be
destroyed by sending back the destroyTVAck control message to the Master Controller.
When received, the Master Controller eventually asks the Compute Virtualization Layer
to remove the ThingVisor instance.

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 38 of 85

Figure 10: Add vThing procedure

3.2.4 SystemDB

The System DB stores the run-time configuration of VirIoT. Currently, the database
in use is MongoDB. The data is organised in collections, which are (to some extent)
analogous to tables in relational databases. A collection stores documents, which can
be different in structure, and this is possible since MongoDB is a NoSQL and thus a
schema-free database. For the time being, the information is classified into five collections,
namely:

1. flavourCollection

2. thingVisorCollection

3. userCollection

4. vSiloCollection

5. vThingCollection

Table 3 shows the general description of the collections, as well as a practical example
for each one of them. In general, any collection can be added, removed and retrieved using

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 39 of 85

Figure 11: Delete vThing procedure

the Command Line Interface. When new information must be stored, a new collection is
added inside the database.

The flavourCollection stores information about the flavours, like the used image
name, that the Master Controller employs to check and download the image from the
Image Repository. It is used, for example, when the administrator adds a new vSilo.
Inside the thingVisorCollection information about the thingVisors is stored, such as
its instance (e.g. container) ID, IP address, image name and all the vThings associated
with it, as well as the IP address and port of the MQTT data and control broker, in
case of internal information sharing based on MQTT (see D4.1). After the registration
phase of a new user is completed, the userCollection is used to save her credentials,
namely, her ID, password and role, along with her JSON Web Token that is essential to
the user performing any action to the platform. The passwords are not in cleartext, but
an hashed version of them is stored. Lastly, the lastLogin field is updated whenever the
user logs into the system. The vSiloCollection holds the information about the vSilos.
In particular, other than the IP address, ports, instance (container) ID and image name,
it contains the user ID of the unique owner of the vSilo, the tenantID. Likewise, the
collection that stores information about the vThings, the vThingCollection, contains
the ID of the tenant and of the vSilo it is attached to, the vSiloID. It is a string formed by
the tenant and vSilo ID, like it can be seen in the example in the Table 3, “tenant1 Silo1”.

3.3 Developed ThingVisors and Virtual Silo Flavours

This subsection reports the various ThingVisor and the different vSilo flavours we have
developed so far.

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 40 of 85

Figure 12: Delete ThingVisor procedure

We recall (please refer to D2.2 for the architecture details) that:

� ThingVisors fetch or receive data from remote systems (sensors, web services, Con-
text Brokers, data providers, etc...), that comes in various formats, and create
Virtual Things (vThings), which are able to present the same or new data, possi-
bly after reshaping, manipulation or aggregation. Hence, ThingVisors extract data
from the upstream systems that are part of the Root Data Domain and publish
new data to downstream VirIoT components (e.g. vSilos) by means of the internal
information sharing. ThingVisors are able to understand a variety of data formats
and convert them to the internal NGSI-LD neutral format.

� vSilos declare their interest for specific vThings and dynamically incorporate them,
hence getting related data from the internal information sharing, and they have the
goal of exposing such data through systems and Brokers of choice. vSilos are able

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 41 of 85

Collection JSON Description Example
flavourC

' f l avourID ' : f l a v ou r i d ,
' s t a tu s ' : s tatus ,
' f lavourParams ' :

f l avour parameter ,
' imageName ' : image ,
' f l a vou rDe s c r i p t i on ' :

f l a v ou r d e s c r i p t i o n ,
' creat ionTime ' : c r e a t i on t ime

' f l avourID ' : Mobius−base−f ,
' s t a tu s ' : ready ,
' f lavourParams ' : Mobius ,
' imageName ' : f e d 4 i o t /mobius−base−f : 2 . 2 ,
' f l a vou rDe s c r i p t i on ' : s i l o with a oneM2M

Mobius broker ,
' creat ionTime ' :2019−11−19T12 : 04 : 33 . 342169

thingVisorC
' th ingVisorID ' : t h i n g v i s o r i d ,
' s t a tu s ' : s tatus ,
' creat ionTime ' : c r ea t i on t ime ,
' tvDesc r ip t i on ' : t v d e s c r i p t i on ,
' conta iner ID ' : c on ta in e r i d ,
' imageName ' : image ,
' ipAddress ' : i p addre s s ,
' debug mode ' : debug ,
' vThings ' :
[
{

' l a b e l ' : v t l a b e l ,
' id ' : v t id ,
' d e s c r i p t i o n ' : v t d e s c r i p t i o n

}
] ,

' params ' : parameters ,
'MQTTDataBroker ' :{

' ip ' : da ta broke r ip ,
' port ' : da ta broke r po r t

} ,
'MQTTControlBroker ' :{

' ip ' : c on t r o l b r ok e r i p ,
' port ' : c o n t r o l b r o k e r po r t

} ,
' port ' : port ,
' IP ' : i p add r e s s

' th ingVisorID ' : weather ,
' s t a tu s ' : running ,
' creat ionTime ' :2019−11−19T16 : 1 6 : 1 5 . 0 10205 ,
' tvDesc r ip t i on ' : Weather ThingVisor ,
' conta iner ID ' : 3 fa61 f1517339d19eb4 f27 f7ee f15 ,
' imageName ' : f e d 4 i o t /v−weather−tv : 2 . 2 ,
' ipAddress ' : 1 7 2 . 1 7 . 0 . 3 ,
' debug mode ' : f a l s e ,
' vThings ' :
[
{

' l a b e l ' : thermometer in Rome,
' id ' : weather /Rome temp ,
' d e s c r i p t i o n ' : cu r r ent temperature ,

Kelvin
} ,
{

' l a b e l ' : thermometer in Tokyo ,
' id ' : weather /Tokyo temp ,
' d e s c r i p t i o n ' : cu r r ent temperature ,

Kelvin
} ,

] ,
' params ' :
{

' c i t i e s ' :
[

Rome,
Tokyo

] ,
' r a t e ' : 60

} ,
'MQTTDataBroker ' :{

' ip ' : 1 7 2 . 1 7 . 0 . ,
' port ' : 1883

} ,
'MQTTControlBroker ' :{

' ip ' : 1 7 2 . 1 7 . 0 . 1 ,
' port ' : 1883

} ,
' port ' :{} ,
' IP ' : 1 6 0 . 8 0 . 8 2 . 4 4

to understand the NGSI-LD neutral format and convert it to the data format of
their Broker of choice.

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 42 of 85

userC
' userID ' : u s e r i d ,
' password ' : user password ,
' r o l e ' : u s e r r o l e ,
' l a s tLog in ' : u s e r l a s t l o g i n ,
' token ' : u s e r token

' userID ' : admin ,
' password ' : pbkdf2 : sha256 :150000

$mWOSdeEB$09fa6 ,
' r o l e ' : admin ,
' l a s tLog in ' :2019−11−19T12 : 0 0 : 4 9 . 8 26222 ,
' token ' : eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9

vSiloC
' vSi lo ID ' : v s i l o i d ,
' s t a tu s ' : s tatus ,
' creat ionTime ' : c r ea t i on t ime ,
' tenantID ' : t enant id ,
' f lavourParams ' : f lavour params ,
' containerName ' : container name ,
' conta iner ID ' : c on ta in e r i d ,
' ipAddress ' : v s i l o add r e s s ,
' port ' : v s i l o p o r t ,
' vSiloName ' : vs i lo name ,
' f l avourID ' : f l a v o u r i d

' vSi lo ID ' : t enant1 S i l o1 ,
' s t a tu s ' : running ,
' creat ionTime ' :2019−11−18T11 : 4 2 : 3 7 . 1 64069 ,
' tenantID ' : tenant1 ,
' f lavourParams ' : ' ' ,
' containerName ' : t enant1 S i l o1 ,
' conta iner ID ' : 5947

c f90 f ec920a732 f71 f46cd17c690a9a7c943c1
ec263d24026958f7d48b88 ,

' ipAddress ' : 1 7 2 . 1 7 . 0 . 5 ,
' port ' :
{

' 1883/ tcp ' : 32775 ,
' 9001/ tcp ' : 32774

} ,
' vSiloName ' : S i l o1 ,
' f l avourID ' : mqtt−f

vThingC
' tenantID ' : t enant id ,
' vThingID ' : v th ing id ,
' creat ionTime ' : c r ea t i on t ime ,
' vSi lo ID ' : v s i l o i d

' tenantID ' : tenant1 ,
' vThingID ' : weather /Tokyo temp ,
' creat ionTime ' :2019−11−18T12 : 3 7 : 5 7 . 0 36506 ,
' vSi lo ID ' : t e nan t1 S i l o 1

Table 3: Collections stored inside MongoDB

3.3.1 ThingVisors

Table 4 summarizes the ThingVisors we have developed so far. Please contrast this table
with Table 5, which is the complementary one for vSilos. The following sections give
details about operation and implementation of each one of them.

3.3.1.1 Generic oneM2M ThingVisor

This ThingVisor is able to connect to data sources that follow the oneM2M standard,
and it obtains data pieces coming from a set of specified oneM2M Containers that are
hosted on one or more remote oneM2M platforms.

The following box shows a typical set of parameters that can be used to configure the
ThingVisor during the ”Add ThingVisor” operation (please see Section 3.1.9 to under-
stand how the ”Add ThingVisor” operation is performed).

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 43 of 85

Table 4: Available ThingVisors

Data Type Data Format Interface with Remote System

Generic oneM2M pub/sub
Generic NGSIv2 pub/sub

Parking-related NGSIv2 pub/sub
Aggregated Parking Availability NGSIv2 pub/sub

Weather-related JSON RESTful polling

Typical oneM2M ThingVisor Parameters

{'CSEurl':'https://fed4iot.eglobalmark.com','origin':'Superman', 'poaPort

':'8089','cntArns':['Abbas123456/humidity/value','Abbas123456/

batteryLevel/value'],'poaIP':'52.166.X.X','vThingName':'EGM-

Abbas123456-humidity','vThingDescription':'OneM2M humidity data from

EGM Abbass sensor'}

The above configuration tells the ThingVisor to connect to a oneM2M system located
at our EGM partner’s infrastructure, and to subscribe to the Abbas123456 sensor’s hu-
midity readings. This humidity sensor is going to be virtualized inside our platform as
a vThing whose ID is EGM-Abbas123456-humidity, and it comprises the actual value of
humidity and the battery level of the sensor itself. The poaIP is the public IP address of
our platform, so that the remote oneM2M system (a Mobius broker is this specific EGM
deployment) knows how to notify the ThingVisor of new data.

Indeed, this ThingVisor is based on a oneM2M subscribe mode of operation, and at
startup time it registers an own notification end-point into the remote oneM2M platforms,
so as to be notified by the remote oneM2M systems whenever new data is produced for
the specified Containers. During the initialization phase, the ThingVisor also requests
the latest ContentInstances available inside all specified oneM2M Containers, so as to be
ready to reply to possible getContextRequest commands coming from vSilos. Eventually,
it announces the newly created vThing to the downstream components of the VirIoT
system, specifically to the Master Controller (see Section 3.2.3 and Figure 9).

Upon arrival of a fresh piece of data, the ThingVisor carries out a translation from
oneM2M to NGSI-LD and re-publishes the data internally, within VirIoT, making it
available for downstream vSilos. The high-level operation is shown in Figure 13.

Thus, this ThingVisor is central to achieve seamless interoperability with oneM2M
systems, in the forward direction (from oneM2M to other standards/platforms). Impor-
tantly, the mapping from oneM2M data to NGSI-LD data (i.e. to our neutral internal
format) is not automatic as the reverse one is (i.e. the one from our neutral for-
mat to oneM2M, which is carried out along the mapping procedures we have specified
in D2.2). The ThingVisor developer (or the ThingVisor logic) must know (or query) the
underlying information model and resource structure of the oneM2M system, and decide
what Containers are to be grouped together under the same vThing. The important
thing to remark here is that this ThingVisor is capable of exploiting the (reverse of the)

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 44 of 85

Figure 13: oneM2M ThingVisor

”one vThing” to ”many Containers” mapping guideline that we have specified in D2.2.
It is then possible to configure (as seen above) the ThingVisor with a list of oneM2M
Containers that are to be grouped under the same vThing within VirIoT.

3.3.1.2 Generic NGSIv2 Greedy ThingVisor

This ThingVisor is able to connect to data sources that follow the NGSIv2 standard, and
it obtains data entities coming from a remote Orion Context Broker (FIWARE platform).

The following box shows a typical set of parameters that can be used to configure the
ThingVisor during the ”Add ThingVisor” operation (please see Section 3.1.9 to under-
stand how the ”Add ThingVisor” operation is performed).

Typical Greedy ThingVisor Parameters

{'ocb_service':['trafico','aparcamiento','pluviometria','tranvia','

autobuses','bicis','lecturas','gps','suministro'], 'ocb_ip':'fiware-

dev.inf.um.es', 'ocb_port':'1026', 'notificacion_protocol':'http', '

notify_ip':'X.X.X.X'}

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 45 of 85

Figure 14: Generic NGSIv2 Greedy ThingVisor

The above configuration tells the ThingVisor to connect to a remote FIWARE-based
platform exposing an NGSIv2 API, and more specifically to an Orion Context Broker GE
(Generic Enablers in FIWARE terminology build an ecosystem of applications, services
and data), to obtain all its data. This data is going to be virtualized inside our platform
under different vThings, specifically one vThing per NGSIv2 entity type the remote
FIWARE platform contains.

Further, this ThingVisor uses publication and subscription mechanisms to receive all
the information coming from the selected platform. The notify ip is the public IP
address of our platform, so that the remote Context Broker knows how to notify the
ThingVisor of new data. As said, in this case, this ThingVisor also sends a subscription
request per entity type, to the FIWARE platform.

To close the initialization phase, ThingVisor sends createVThing messages about the

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 46 of 85

new vThings to the downstream components of the VirIoT system, specifically to the
Master Controller (see Section 3.2.3 and Figure 9).

When ThingVisor receives the provider’s Contex Broker notifications, it transforms
the data from NGSIv2 to neutral NGSI-LD format and re-publishes the data internally,
within VirIoT, making it available for downstream vSilos. The high-level operation is
shown in Figure 14.

3.3.1.3 Smart Parking ThingVisor

This component is able to connect to data sources that follow the NGSIv2 standard, and
it obtains data entities coming from a remote Orion Context Broker (FIWARE platform).

The following box shows a typical set of parameters that can be used to configure the
ThingVisor during the ”Add ThingVisor” operation (please see Section 3.1.9 to under-
stand how the ”Add ThingVisor” operation is performed).

Typical Smart Parking ThingVisor Parameters

{'ocb_ip':'fiware-dev.inf.um.es', 'ocb_port':'1026', '

notificacion_protocol':'http', 'notify_ip':'X.X.X.X'}

Figure 15 shows how this component obtains data that is relevant to our Smart
Parking use case from a particular Orion Context Broker that supports NGSIv2 API,
and it exposes the corresponding payloads to other VirIoT components, by transforming
them to our neutral NGSI-LD format.

The internal functionality of this ThingVisor is the same as mentioned above for the
Greedy one, but this specific ThingVisor focuses only towards those data pieces that are
relevant information for the Smart Parking use case.

3.3.1.4 Aggregated Parking Value ThingVisor

This component is able to connect to data sources that follow the NGSIv2 standard, and
it obtains data entities coming from a remote Orion Context Broker (FIWARE platform).

The following box shows a typical set of parameters that can be used to configure the
ThingVisor during the ”Add ThingVisor” operation (please see Section 3.1.9 to under-
stand how the ”Add ThingVisor” operation is performed).

Typical Aggregated Value ThingVisor Parameters

{'ocb_ip':'fiware-dev.inf.um.es', 'ocb_port':'1026', '

notificacion_protocol':'http', 'notify_ip':'X.X.X.X'}

Figure 16 shows how this component obtains data information relevant for the Smart
Parking use case from a particular Orion Context Broker, processes and exposes an
aggregated value in neutral NGSI-LD format. At this stage, the aggregated value is simply

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 47 of 85

Figure 15: Smart Parking ThingVisor

the sum of free parking spaces. In order to accomplish the task, this ThingVisor receives
data whenever there are changes, using publication and subscription mechanisms, and
recalculates the aggregated value. Periodically, it verifies whether or not the aggregated
value has changed since it was last published to other VirIoT components; only when this
occurs, then ThingVisor re-publishes the data. The ThingVisor only needs one virtual
thing to carry out its task.

3.3.1.5 OpenWeatherMap ThingVisor

This ThingVisor is able to provide virtual weather sensors (thermometer, barometer, etc.),
for specified cities, by virtualizing information coming from the openweathermap.org
service.

We have registered a Fed4IoT account on the openweathermap.org open API sys-

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 48 of 85

Figure 16: Aggregated Parking Value ThingVisor

tem, which allows our ThingVisors to periodically poll selected information from the
openweather service, based on a custom configuration that is fed to the ThingVisor at
startup time. Consequently, the OpenWeatherMap ThingVisor is able to create a set of
vThings that act as virtual sensors for each measurable property (i.e. humidity, temper-
ature, current atmospheric pressure) for each of the locations that have been specified at
ThingVisor creation time.

The following box shows a typical set of parameters that can be used to configure the
ThingVisor during the ”Add ThingVisor” operation (please see Section 3.1.9 to under-
stand how the ”Add ThingVisor” operation is performed).

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 49 of 85

Typical OpenWeatherMap ThingVisor Parameters

{'cities':['Rome', 'Tokyo','Murcia','Grasse','Heidelberg'], 'rate':60}

The above configuration tells the ThingVisor to poll the openweather APIs every 60s,
and it tells that the ThingVisor is to create a set of virtual sensors for all the specified
cities and all the available measurable properties.

Figure 17 shows the flow of operations of the OpenWeatherMap ThingVisor.

Figure 17: OpenWeatherMap ThingVisor

3.3.2 Virtual Silo Flavours

vSilos are the IoT backend systems that support the Applications being developed by
every user/tenant of the VirIoT platform. Tenants can already choose among a variety
of vSilos flavours (images of vSilos), but adding new flavours is possible.

Every vSilo is composed of two main building blocks:

� the vSilo Controller. It is a custom software piece that is able to interpret the
incoming NGSI-LD data and metadata produced by the upstream VirIoT compo-
nents (i.e. ThingVisors). Additionally, it is in charge of transforming such data
(and possibliy metadata) into the destination native format of the vSilo Broker.

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 50 of 85

� the vSilo Data Broker. This is a standard IoT data broker (such as FIWARE’s
Orion, oneM2M’s Mobius, NEC’s Scorpio, a Mosquitto server, etc...) that is incor-
porated into the vSilo and serves data coming from the virtual things (that have
been added to the vSilo) to the external IoT Application.

The vSilo Controller and the vSilo Data Broker collaborate in a simple manner, as
exemplified in Figure 18.

Figure 18: Generic vSilo operations

The internal communication channel between controller and broker is usually either
RESTful or based on pub/sub. Table 5 summarizes the vSilos we have developed so far.
The following sections give details about operation and implementation of each one of
them.

Table 5: Available vSilo Flavours

IoT Broker Data Format Broker Developer Broker Interface

Mobius oneM2M OCEAN open alliance RESTful
Scorpio NGSI-LD NEC RESTful
Orion NGSIv2 FIWARE RESTful

Mosquitto JSON Eclipse Foundation pub/sub

3.3.2.1 Mobius oneM2M Flavour

This vSilo Flavour contains a vSilo Controller that is able to transform NGSI-LD data
and metadata into oneM2M data and metadata. It performs a straightforward map-
ping between NGSI-LD and oneM2M along the guidelines for automatic translation that
we have defined in D2.2. Further details about the interoperability of NGSI-LD with
oneM2M, and about the mapping of metadata, are given in the D4.x deliverables. The
relevant piece of information here is that this vSilo includes a Mobius server, which is
the open source IoT server platform based on the oneM2M standard that has received
certification by TTA (Telecommunications Technology Association). This oneM2M cer-
tification makes it one (of the two) servers designated as golden samples (please see
http://onem2mcert.com/sub/sub02 07.php.

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 51 of 85

3.3.2.2 Scorpio NGSI-LD Flavour

Scorpio is the NGSI-LD-capable Context Broker under active development by NEC. The
Scorpio vSilo is able to replicate upstream NGSI-LD data to the broker. Specifically,
it has the ability to map, into NGSI-LD, both data and metadata by exploiting NGSI-
LD Relationships between Entities and vThings. This approach is a consequence of
our information model design, which is also meant to support discovery and indexing of
vThings inside the VirIoT platform, in general. More details can be found in deliverables
D4.x.

3.3.2.3 Orion NGSIv2 Flavour

This vSilo flavour contains the vSilo Controller that receives NGSI-LD representation of
the vThings, previously sent by the ThingVisors, through the internal information shar-
ing. The vSilo Controller processes the NGSI-LD payload and builds the corresponding
payload in NGSIv2 format using a wrapping tool. After performing this transformation
task, the vSilo Controller can forward and store the NGSIv2 to an Orion Context Broker
using the NGSIv2 RESTful API. This broker is included in vSilo component too.

3.3.2.4 Mosquitto Raw JSON Flavour

This virtual silo flavour is designed so as to export the IoT data coming from its virtual
things via simple MQTT topics. This is a kind of raw virtual silo, which can be in turn
connected to an upstream IoT platform such as Node-Red or Google/Azure/Amazon IoT
cloud services, according to the application design and deployment strategies. Specifi-
cally, this vSilo incorporates a Mosquitto server instance. Upon receiving data, the silo
controller simply publishes any data payload to a Mosquitto topic that is named accord-
ing to the tenant name and the vThing data is coming from: tenant id/v thing id.
Any Application can then subscribe to this tenant-specific topic, and can receive a raw
copy of data and metadata.

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 52 of 85

4 ThingVisor Advanced Orchestration and Develop-

ment Tools

4.1 FogFlow

This section introduces the high level system design of FogFlow and its latest program-
ming model, which could be further used to support the implementation of more advanced
ThingVisors. Later, it describes how FogFlow is integrated with the other Fed4IoT com-
ponents to support the development and management of ThingVisors. More detailed
information on how to use FogFlow is provided by the FogFlow online tutorial [1].

4.1.1 System Overview

Service
Orchestrator

Content-base
Discovery

B

B

B

actions

Service
Template

actions

usage context

data and system
context

A

Broker

A

A

AB Worker

BA

fog
node

fog
node

fog
node

fog
node

management
node

Figure 19: System Overview of FogFlow

FogFlow is an open source fog computing framework that can dynamically orches-
trate IoT services over cloud and edges on-demand, in order to fulfill high-level “service
intention” expressed by service consumers, which could be external applications or any
IoT devices. Figure 19 shows a high level view of the FogFlow system. It consists of a
number of fog nodes, each of which runs a Broker and a Worker. A management node
runs two centralized components, namely Discovery and Orchestrator. Each node is a
Virtual Machine (VM) or physical host deployed either in the cloud or at edges. All fog
nodes form a hierarchical overlay based on their configured GeoHash IDs. All data in
the system is represented as entities saved by a Broker and indexed by the centralized
Discovery for discovery purposes. The data can be raw data published by IoT devices,
intermediate results generated by some running data-processing tasks, or data available

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 53 of 85

at a resource, reported by fog nodes. When a fog function is registered, Orchestrator will
subscribe to the input data of the fog function to Discovery. Once the subscribed data
pieces appear or disappear in the system, Orchestrator will be informed, and it can then
take orchestration actions accordingly, which will be carried out by an assigned worker.

4.1.2 Intent-based Programming Model

As illustrated by Figure 20, in FogFlow an IoT service is represented by a service topology
and a set of user-defined intents.

IoT
Service Intent(s)

B

A

C

DAG

service topology

operator

task

Template(s)
Java,

JavaScript,
Python

Docker image 1
(for X86, Linux)

Docker image
2 (for ARM, Linux)

Figure 20: Service Model in FogFlow

The service topology is a graph of tasks, and each of them is supposed to perform
some type of data processing. Tasks in the same topology are linked with each other,
based on the dependency of their data inputs and outputs. Each task is annotated by
service designers via a graphical editor, to define their input and output data and to also
define a granularity feature that determines how input data should be divided into task
instances, for parallelization of computation. Each task instance runs within a docker
container. By design, a service topology only defines the data processing logic of an IoT
service.

To trigger the service topology in FogFlow, service consumers need to define an in-
tent to express their high-level goals of using such as IoT service. More specifically, as
illustrated by Figure 21, an intent can be customized to cover the following goals:

1. service topology that defines which service logic to be triggered;

2. geoscope that defines the scope to select the input data for applying the selected
service topology;

3. service level objective (SLO) that defines the service level objective to be achieved,
in terms of latency requirements, bandwidth saving, or privacy/security needs;

4. priority that defines how the triggered service deployment could utilize the shared
infrastructure resources with the other existing services.

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 54 of 85

With such an intent-based programming model, FogFlow is able to dynamically or-
chestrate concrete service deployment plans to meet any user-defined intents in a more
flexible way, even for the same service topology.

Intent

Service
topology Geoscope SLO

Topology which
consist of one or
more than one

tasks

local

global

polygon

cost

latency

accuracy

Priority

Figure 21: Intent Model

As shown in Figure 22, programming a FogFlow service includes three key elements:
operator, service topology, and intent. An operator represents a type of data processing
unit, for example, calculating the average temperature, performance the face matching of
two face images. A service topology represents the computation logic of the IoT service
and consists of several linked operators annotated with their data inputs and outputs.
An intent is a JSON object that follows the proposed intent model to define a customized
requirement of how the service topology should be triggered.

Figure 22: Three key elements to program an IoT service in FogFlow

Currently, FogFlow can support serverless fog computing by providing so-called Fog
Function, which is a common easy case of the intent-based programming model. As

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 55 of 85

illustrated in Figure 23, Fog Function represents a common special case of the generic
intent-based programming model in FogFlow, meaning that a fog function is associated
with a simple service topology that includes only one task (a task is mapped to an operator
in FogFlow) and an default intent that takes ”global” as its geoscope. Therefore, when
a fog function is submitted, its service topology will be triggered immediately once its
required input data is available.

Figure 23: FogFunction as a simple case of service topology in FogFlow

4.1.3 Context Aware Service Orchestration

Another unique feature of FogFlow is context aware service orchestration, meaning that
FogFlow is able to orchestrate dynamic data processing flows over cloud and edges based
on the following three types of contexts, including:

Data context : the structure and registered metadata of available data, including both
raw sensor data and intermediate data. Based on the standardized and unified data
model and communication interface, namely NGSI, our system is able to see the content
of all data generated by sensors and data processing tasks in the system, such as data
type, attributes, registered metadata, relations, and geo-locations.

System context : available resources at each fog node. The resources in a cloud-
edge environment are geo-distributed and they are dynamically changing over time. As
compared to cloud computing, resources in such a cloud-edge environment are more
heterogeneous and dynamic.

Usage context : high level usage intentions defined by service designers to indicate
what their fog functions should be used in the system, such as which type of results is
expected under which type of QoS within which geo-scope.

Figure 24 shows the major procedure for Orchestrator to orchestrate fog functions
based on the update notification of context availability of their input data, provided by
Content-based Discovery. More specifically, the following four basic orchestration actions
are designed to dynamically orchestrate tasks for each registered fog function.

� ADD TASK : To launch a new task with the given configuration that includes the
initial setting of its input streams. When launching a new task, the Worker first
fetches the Docker image for this task and then launches and configures this task
within a dedicated Docker container. After that, the Worker subscribes the input
entity to the context management system on behalf of the running task so that the
input streams can be received by the running task; in the end, the newly created
task is reported back to the orchestrator.

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 56 of 85

� REMOVE TASK : To terminate an existing running task with the given task ID.
When terminating an existing task, the Worker not only stops and removes its
corresponding Docker container, but also unsubscribes its input streams so that the
context management system does not end up with lots of unavailable subscribers.

� ADD INPUT : To subscribe to a new input stream on behalf of a running task so
that the new input stream can flow into the running task.

� REMOVE INPUT : To unsubscribe from some existing input stream on behalf of a
running task so that the task stops receiving entity updates from this input stream.

Figure 24: Data-driven orchestration

4.1.4 FogFlow-based ThingVisor

FogFlow provides an advanced programming model to implement various ThingVisors
that can take advantage of edge computing. For example, in the person finder application
that we have as one of our use cases, when creating a Virtual Thing for a camera, we
need to trigger a face-matching task to check if the camera is capturing the person (a lost
child, for instance). In order to reduce the bandwidth consumption, it is better to offload
the face-matching task to an edge node that is close to the camera. Using FogFlow,
we can outsource some data-intensive data processing tasks down to the edge and then
produce the required Virtual Things or their attributes with low bandwidth consumption
and delay.

Also, with the intent-based edge programming model in FogFlow, we can implement
different types of ThingVisors in a more flexible way. For example, we can implement a
very specific ThingVisor that is used to create only one specific Virtual Thing; however,
we can also implement some generic ThingVisors that can be used to create a number of

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 57 of 85

Virtual Things with the same kind on-the-fly for a given geo-scope. In addition, with the
fog function programming model, we can implement some ThingVisors that can create
Virtual Things automatically. In this case we can create virtual things without explicitly
calling the /addVThing API.

Figure 25 shows how FogFlow works with the other components in Fed4IoT. FogFlow
can be used to implement different types of FogFlow-based ThingVisors, each of which
is implemented as a FogFlow service based on the intent-based programming model.
Assume that those FogFlow-based ThingVisors are developed and registered in FogFlow
via the GUI of FogFlow Task Designer. Then those ThingVisors can be managed by
the APIs (/addThingVisor and /deleteThingVisor) of Fed4IoT Master Controller via
a generic FogFlow-ThingVisor, which is a dockerized application to communicate with
the running FogFlow system for managing specific FogFlow-based ThingVisors. Since
each FogFlow-based ThingVisor is implemented as a FogFlow service, adding or deleting
ThingVisor is equal to enabling or disabling a FogFlow service via a customized intent.

For the management of Virtual Things, there are two cases:

� pull-based data source: the device data to create the Virtual Thing is not available
in FogFlow, the /addVThing interface must be explicitly called to provide the device
profile, which will trigger FogFlow to launch some data processing tasks for creating
the Virtual Thing. For the use case of lost child finder, to create the Virtual Things
of cameras, we need to call /addVThing to provide the camera profile, such as the
accessible URL of the camera stream.

� push-based data source: the required data source to create the Virtual Thing is
already available in FogFlow. For example, some temperature sensors joins FogFlow
and reports its profile to the internal context management system in FogFlow; or the
required data sources are produced by some other Virtual Things already and we
need to aggregate those data sources in FogFlow to further create a new aggregated
Virtual Thing. For example, we can create a Virtual Thing for a city by taking the
temperature data from all virtualized temperature sensors from that city. In this
type of case, once we enable the defined FogFlow service, the associated Virtual
Things can be created automatically on the fly. This is no need to further call the
/addVThing interface. Therefore, FogFlow can help to reduce the effort of managing
Virtual Things.

Once a Virtual Thing is created in FogFlow, its information will be registered and
forwarded to the internal information sharing system of VirIoT and it will be shared
to the other applications via a Virtual Silo. To support this feature, we are currently
extending the intent model in FogFlow to cover a new aspect, called destination, which
can tell FogFlow where to publish the generated Virtual Things.

4.2 Service Function Chaining

Service function chaining (SFC) is a technology to compose network functions by chaining
component sub-functions. With the advancement of computer hardware technology, even
functions to implement networking services, such as packet forwarding, firewall, and load
balancing, can be implemented by means of high-level software programming. Such

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 58 of 85

Figure 25: FogFlow in VirIoT

technology is called software-defined networking (SDN) or network-function virtualizaiton
(NFV) depending on the focus of the topic. Several networking services are performed in
sequence in data centers. For example, a packet requesting a web page is first processed
by the firewall to check the sanity of the packet, and then passed to L7 load-balancer to
forward the packet to an appropriate server.

The same technology can be applied to realize vThings by means of ThingVisors. A
video frame captured by a surveillance camera may be processed by a ThingVisor to
detect human or animal, extract a human face or an animal figure, and then the output
picture is further processed by another ThingVisor to identify the age of the person or to
classify the animal. The information may be further forwarded to yet another ThingVisor
to generate statistical data.

As stated in the paragraph above, SFC is used to construct ThingVisors (Figure 26).
Video images provided by the camera directly connected to VirIoT environment are
captured by the image capture function. The captured images as well as the images
provided by one of the Root Data Domain are processed by the human detection function
to find humans in the captured images. Then the detected human images are further
processed to extract faces. The captured images by the directly connected camera are
provided to Virtual Silos as vThing data. The extracted face images are also provided
as a vThing to Virtual Silos. Each output of the sequence of functions executed by the
service function chaining can be provided as a vThing, too. Accordingly, the chain of
functions is a realization of a ThingVisor.

There are a few technical challenges in implementing service function chaining. They
are:

� the mechanism to execute service functions in VirIoT,

� the location to execute functions and the choice of available functions to be used in
a particular chain, and

� the communication mechanism to execute functions.

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 59 of 85

Master Controller
(Orchestration)

Pub/Sub
System

Virtual Silos
broker type

#1 (oneM2M)

vSilo
Controller

(Flavor#1)

vSilo #a

broker type
#1 (oneM2M)

vSilo
Controller

(Flavor#1)

vSilo #b

vSilo
Controller

(Flavor#2)

broker type
#2 (MQTT)

Root Data Domain

ThingVisor #2

ThingVisor #3

ThingVisor #4

ThingVisor #1

TN
: adapterO

-G
TN

: adapterF-G

TN: task name

TN
:

analytics
TN

: data
copy

TN
: cam

era
adapter

TN
: im

age
capture TN

: hum
an

detection

TN
: face

detection

vThing:
face im

age

vThing:
captured

image

vThing:
custom

ers
vThing:

tem
p. reading

Service Function Chaining

Figure 26: Service Function Chaining in VirIoT

4.2.1 Implementation of Service Functions

To execute each Service Function (SF) in any network nodes without considering hardware
dependence, SF should be implemented on computer virtualization environments. In the
first step, we select Docker as the virtualization platform. Because SF implement only a
partial functionality of an IoT service, SF needs to clearly define input and output data
types. In addition, to participate in SFC, each SF has a unique name. In case of IoT
services using video cameras (e.g., video surveillance service), typical names of SFs are
“capture image/video”, “encoding”, “object detection”, and “streaming.”

4.2.2 Deployment and Selection

An instance of each SF in a chain is required to be placed on a node such as a route or
an edge computing node, or a VM before processing the chain for SFC. If no node have
any instance of an SF, it must be downloaded from an SF Repository to the node. In
this context, the downloading time of a large size SF can be a bottleneck of the whole
processing time for the chain. In another context, if multiple chains must be processed
simultaneously, several SFs with the same type may be used by different SFCs. If such SFs
are processed on different nodes, all SFs must be downloaded from the repository; that is,
multiple SF downloading can degrade the SFC throughput. Then, one of the objectives
of SFC in VirIoT is to achieve effective processing for each chain, i.e., minimizing the
response time with the small number of SF instances and computational resources. The
points to be satisfied in VirIoT are described as follows:

� SF deployment:
SF instances must be allocated to nodes that contribute to optimize the response

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 60 of 85

Figure 27: Procedures of SF-CUV algorithm.

time. This optimization becomes more crucial when no SF is deployed, i.e., the
initial state in VirIoT. When SF instances are been deployed on a node that has
already downloaded the SF, the node can initiate SF instances without downloading
the SF. SF instances should be deployed on nodes where chains can be effectively
processed.

� SF selection:
Once an SF instance is deployed on a node, it should be shared among many chains
using the same SFs in order to avoid redundant SF download and execution. Thus,
a criterion for sharing the SF instances among chains is needed.

We designed the algorithm to perform SF deployment and SF selection simultaneously.
The main idea behind the algorithm is to cluster SFs as an allocation unit to a node.
In particular, the SF clustering algorithm for scheduling SFs, namely SF-clustering for
utilizing vCPUs (SF-CUV), is directed to minimize the response time with a small number
of vCPUs (virtual CPUs) and SF instances. SF-CUV consists of two phases, i.e.,

1. SF clustering and pre-vCPU allocation phase (phase I).

2. SF ordering and actual SF re-allocation phase (phase II).

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 61 of 85

In phase I, an accurate scheduling priority is derived. In phase II, the accurate scheduling
priority is determined and the SFs are moved to another vCPU for sharing to avoid
redundant SF downloading procedures. Thus, each SF can be scheduled to effectively
minimize the response time with a small number of vCPUs and SFs. In particular, the
second phase minimizes the number of allocated SFs by sharing them in the same vCPU,
and it also minimizes the number of allocated vCPUs. Thus, many SFCs can be effectively
and simultaneously executed in the system.

Figure 27 shows the whole procedures of SF-CUV. In this figure, the assumed function
chain is a workflow-type chain, that is a general form of SFC. Phase I outputs two SF
clusters by SF clustering steps. This phase also outputs the mapping between each SF
cluster and each vCPU as an allocation target. This allocation can derive an accurate
scheduling priority for phase II. Then the actual SF ordering is performed at phase II. In
this phase, D is moved to another VM because the concurrent execution of C and D on a
VM exceeds the predefined CPU load. From those procedures, in total three vCPUs on
two VMs are used for processing the SF workflow.

4.2.3 Communications Mechanisms for Service Function Chaining

SF instances placed in network nodes, edge computing facilities, and clouds exchange
messages to realize SFC. The initiator of the message exchange in SFC may not be SF
instances but can be external sources such as user triggers or IoT devices generating
their output. The communication is not end-to-end but hop-by-hop in this respect. In
this project, we are investigating three alternatives as the communication mechanism:
1) IP-based point-to-point mechanism, 2) Topic-based publish/subscribe over IP, and 3)
ICN.

4.2.3.1 IP-based Point-to-Point

IP-based point-to-point mechanism is the simplest approach and uses IP addresses for
routing of SFC. To chain the SFs, each SF needs to know the IP address of the next SF.
In the preliminary SF workflow, we assume that a controller of the workflow knows IP
addresses of every computing node in the system and assigns the appropriate IP address
and port of the next SF instance after the optimal SF deployment plan is determined.

4.2.3.2 Topic-based Publish/subscribe over IP

Topic-based Publish/subscribe (pub/sub) is another approach to realize SFC. Unlike
the IP-based point-to-point, Pub/sub solves the routing problem is SFC by using topic
name. As explained in 4.2.3.1, IP-based point-to-point approach assumes one controller
knows IP addresses of all computing nodes, and this assumption potentially contains a
scalablity issue. In contrast, in the pub/sub-based approach, the routing of SFC can
be easily managed by only defining topics for pub/sub messages. In a preliminary im-
plementation, the topic is specified by device ids and names of SFs such as “[pub/-
sub://]DeviceID/FunctionA/FunctionB/Function C.”

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 62 of 85

Content Name

Selectors MetaInfo

Guider

Signature

Nonce

Interest pakcet

Content Name

Content

Data packet

Figure 28: Original NDN Packet Format

Content Name

Selectors

Function Names

Guider

Nonce

Interest pakcet

Figure 29: Extended Interest Packet Format

4.2.3.3 Information Centric Networking

Name or identifier assigned to a content is the address to be used to forward packets in
information-centric networking (ICN). By making use of this feature of ICN, the func-
tions with the same capability can be identified by the same name regardless of their
implementation. IoT devices with the same funcionality can also be identified by the
same name. In this respect, ICN is a promising communication mechanism among IoT
devices and service functions.

We adopted one typical incarnation of ICN: Named-Data Networking (NDN) or
Content-Centric Networking (CCN), which uses request-response communication model.
A content is requested by Interest packet and the content requested by the Interest packet
is delivered by Data packet. The content to be requested is identified using a hierarchical
name such as “rs1/lamp/2256” and the name is specified in both the Interest packet
and Data packet. The formats of Interest packet and Data packet in NDN are shown in
Figure 28.

We extended the Interest packet format to include the names of functions as shown in
Figure 29. The functions specified in the Function Names field are applied to the content
requested in the Content Name field. A sequence of function names can be specified in
the function names field. Suppose three functions F1, F2, and F3 are to be applied to the
content specified in the content name field. Then, the three function names are specified
in the function names field in the reverse order of the application, i.e., F3:F2:F1. The
Interest packet forwarded through the three functions F3, F2, and F1 in that order, and

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 63 of 85

F1F2F3

Router 2 Router 3

content
Data packet

Interest packet

consumer

Router 1

producer
(IoT device)

F3:F:F1 F2:F1 F1

Docker

Figure 30: Example of Function Chaining

finally to the content specified by the content name field (Figure 30). The content is
first delivered to F1 in the Data packet. F1 applies its processing on the content and
pass to the next function F2. F2 applies its function on the received content in the Data
packet, and so on. The consumer who originally dispatched the Interest packet receives
the content after application of all the three functions.

We implemented service functions as Docker containers. When a service function is
installed with an NDN router, its routing table, Forwarding Information Base (FIB), is
configured so that the Interest packet with the name of the installed service function is
forwarded to the Docker container. By implementing service functions by Docker con-
tainers, service functions can be dynamically added to and removed from NDN routers
regardless of the execution environment of NDN routers. Also, we confirmed activation
time of service functions in Docker containers is about 1/20 of virtual machine imple-
mentation of service functions.

When the router receives an Interest packet with the name of a service function
which is offered at the router, it removes the corresponding service function name from
the function names field of the packet, and then forward the Interest packet to the Docker
container offering the service function according to the information found in its FIB. The
service function further forwards the Interest packet back to the NDN router. The NDN
router then forwards the Interest packet towards the next service function by simply
forwarding the packet referring to what is specified in the function names field because
the next function is what is specified as the first function in the Function Names field
now.

After consuming all the function names, the function names field becomes empty.
Then NDN routers forward the Interest packet using its content name field. The Interest
packet eventually received by the source of the content and the source creates a Data
packet. The Data packet is sent back towards the consumer on the path of created by
the Interest packet. Since the path includes service functions, the functions process the
Data packet and further send the result back towards the consumer.

4.2.4 Performance Evaluation

We implemented a workflow engine to incorporate SF scheduling algorithms including
SF-CUV for the performance verification in a real environment. We assume that each
SF is performed in a heterogeneous distributed environment where nodes have different
configurations, such as VMs in cloud, edge computing facilities, and edge devices. In this
context, we conducted the performance comparisons in terms of the response time and

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 64 of 85

Internet

Get continer img

if necessary.

Scheduled Info.
VM

Get input file

if necessary.

Cloud#1

vCPU

File Server

Cloud#2

Container Repository

SFC (workflow)

Delegator

SF Scheduling
Algorithm

- Mapping (SF-vCPU)
- Exec. Order

Cloud#3

NW#1 NW#2

Input
File

Dev.#1 Dev.#2
Computational Resources

Internet

Container
Img

NW#2 Router#2 Bo$leneck BW to
external hosts

100Mbps.

Internal BW 1Gbps

Cloud#3 # of VMs 8VMs

of vCPUs 4vCPUs x 4VMs
4vCPUs x 2VMs

vCPU Freq. {1.0, 3.0, 3.5} GHz.

BW to Router #2 1Gbps

Hardware Parameter ValueHardware Parameter Value

NW#1 Router#1 Bo$leneck BW to
external hosts

100Mbps.

Internal BW 1Gbps

Cloud#1 # of VMs 15VMs

of vCPUs 2vCPUs x 4VMs
4vCPUs x 11VMs

vCPU Freq. {2.0, 2.5, 3.0} GHz.

BW to Router #1 1Gbps

Cloud#2 # of VMs 6VMs

of vCPUs 2vCPUs x 4VMs
4vCPUs x 2VMs

vCPU Freq. {1.0,2.0, 2.5} GHz.

BW to Router #1 1Gbps

Dev.#1 Type NVIDIA Jetson AGX
Xavier (2.26 GHz x
8Cores, 16GB RAM)

Dev.#2 Type NVIDIA Jetson TX2
(2.0 GHz x 6Cores, 8GB
RAM)

User

Figure 31: Experiment Environment

resource utilization to verify the practicality of SF-CUV. We compared SF-CUV with
five other algorithms. They are CUV-FIX, HEFT, PEFT, CAP-based, and COM-based.

CUV-FIX is a variant of SF-CUV, where each allocated vCPU in the clustering phase
is fixed in the SF ordering phase. Heterogeneous earliest finish time (HEFT)[2] is a well-
known task scheduling algorithm that is widely employed in real systems. Predict-EFT
(PEFT)[3] is a variation of HEFT that outputs a better schedule length than HEFT.
Thus, we adopted PEFT as a state-of-the art task scheduling algorithm. In capacity-
based approach (CAP-based), the order for SF selection is based on the increasing order
of the finish time with the average processing speed and the average communication
bandwidth. Then, the selected SF is allocated to the idle time slot of the vCPU with the
largest residual capacity. This approach is adopted by [4, 5]. Communication locality-
based approach (COM-based) tries to minimize the communication time among SFs, i.e.,
the output data from one SF is sent to the nearest node having sufficient capacity to
accommodate the target SF. Such data locality-based SF allocation has been reported in
the literature[6, 7].

Figure 31 shows the environment in which we conducted the performance comparison.

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 65 of 85

Noise removal

- Count up # of persons
- Mark each person’s face

1

2

3

1

1

2

3

1

2

3

1 1

-

=

1 1

-

=

1 1 ε

-

= +

ε+

ε+

ε+

Sum up # of persons

- Synthesize all sub-images
- Receive total # of persons.

1 1

Img. Transformation(png->jpg)

1
ε

2

æ ö
+ç ÷

è ø

5KB

5KB

5KB

5KB

5KB

1
ε

2

æ ö
+ç ÷

è ø

1
ε

2

æ ö
+ç ÷

è ø

1
ε

2

æ ö
+ç ÷

è ø

-

Figure 32: Applied workflow structure.

In this environment, we set up a heterogeneous computing environment in two different
networks, i.e., NW]1 and NW]2. In these networks, we deployed computer hosts on which
VMs run through Apache CloudStack. Each VM works on Ubuntu Desktop 18.04.3 LTS
through KVM hypervisor. Although the mapping between each CPU core and each
vCPU is typically controlled by a hypervisor, in this experiment, we manually mapped
each CPU core and each vCPU by CPU pinning in advance. The reason is that we
assume that each SF is allocated to each vCPU by an SF scheduling algorithm. In this
environment, we assume that one SF corresponds to one Docker container that is stored
in the “Container Repository” in Figure 31. Thus, if a node has no SF for execution, it
downloads the SF from the Container Repository by SCP and then starts execution. If
an execution of an SF requires one input file and the node to execute the SF has no input
file, it downloads the input file from the “File Server” by SCP. Thus, we assume that the
file transfer involving the input file and Docker image may occur.

Figure 32 shows the applied workflow of the SFC. The workflow has six types of SF,
i.e., A, B, C, D, E, and F, and every SF is executed on a Docker in which OpenCV is
pre-installed. Then, we generated the OpenCV-enabled Docker image and compressed
it as 1.22 GB tar file that we name “BaseSF-tar”, and it was stored in the “Container
Repository” in Figure 31. As the workflow has six types of SF, we generated six different
Docker images based on “BaseSF-tar”, i.e., every SF Docker image has the same file size
(1.22 GB).

Figure 33 shows the comparison results of the degree of SF sharing in the real envi-
ronment. In this figure, the horizontal axis represents the number of partitions |B|, i.e.,
the number of instances of SF B. At |B| = 2, the degree of SF sharing is nearly the same
among the algorithms. The reason is that the number of SFs (|V | = 3(|B| + 1) = 9 is
not sufficient to provide the difference in the degree of SF sharing, i.e., no SF has not
been moved in the second phase, “SF ordering and actual vCPU allocation” phase, in
SF-CUV.

If |B| is larger, the difference increases and SF-CUV outperforms the others in terms

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 66 of 85

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

2 5 10 20 30A
v
e

.
#
 o

f
S

a
m

e
 T

y
p
e

 S
F

s
 p

e
r

v
C

P
U

|B|: # of Partitions

SF-CUV
CUV-FIX

CAP-based
COM-based

HEFT
PEFT

Figure 33: Degree of SF sharing.

 0

 0.5

 1

 1.5

 2

 2.5

2 5 10 20 30

S
L

 R
a

ti
o
 t
o
 S

F
-C

U
V

|B|: # of Partitions

SF-CUV
CUV-FIX

CAP-based
COM-based

HEFT
PEFT

(a) response time Ratio

 0

 0.5

 1

 1.5

 2

2 5 10 20 30

E
ff
ic

ie
n
c
y
 R

a
ti
o

 t
o

 S
F

-C
U

V

|B|: # of Partitions

SF-CUV
CUV-FIX

CAP-based
COM-based

HEFT
PEFT

(b) Efficiency Ratio

Figure 34: Comparisons of no SF pre-deployment.

of the degree of SF sharing. In particular, the difference between SF-CUV and CUV-FIX
increases, i.e., more SFs have been moved to be shared in the second phase compared
to the case of |B| = 2. From this result, SF-CUV can effectively share SFs when |B| is
larger than 5.

Figure 34 shows the comparison results in the case of no SF pre-deployment, where
Figure 34 (a) shows the comparison results for the normalized response time by setting
SF-CUV response time to 1.0, and Figure 34(b) shows the results for the normalized
efficiency by setting SF-CUV efficiency to 1.0. In (a) and (b), in all cases of |B|, SF-
CUV outperforms the others in terms of the response time and efficiency. In particular,
in Figure 33, the degree of SF sharing in HEFT and PEFT is worse than that in the
COM-based approach, and in Figure 34(a), their response times are also worse.

Figure 35 shows the comparison results in terms of the response time and efficiency
when SFs are deployed in advance. In this case, every type of SF is deployed before
scheduling SFs, i.e., no SF downloading is required. Thus, this case corresponds to the
ideal situation that we can obtain the information about where and which SF should be
executed in advance. SF-CUV outperforms the others in Figure 35(a) and (b). From
those obtained results, we conclude that SF-CUV satisfies the requirement of response
time minimization with a small number of computational resources with and without SF
pre-deployment.

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 67 of 85

 0

 0.5

 1

 1.5

 2

 2.5

2 5 10 20 30

S
L

 R
a
ti
o

 t
o

 S
F

-C
U

V

|B|: # of Partitions

SF-CUV
CUV-FIX

CAP-based
COM-based

HEFT
PEFT

(a) response time Ratio

 0

 0.5

 1

 1.5

 2

2 5 10 20 30

E
ff
ic

ie
n
c
y
 R

a
ti
o
 t
o
 S

F
-C

U
V

|B|: # of Partitions

SF-CUV
CUV-FIX

CAP-based
COM-based

HEFT
PEFT

(b) Efficiency Ratio

Figure 35: Comparisons of SF pre-deployment.

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 68 of 85

5 Flexible Compute Virtualization Architecture

In order to enable IoT virtualization and its applications and orchestration, it is es-
sential that the Fed4IoT IoT Virtualization Platform (VirIoT) can use heterogeneous
compute virtualization infrastructures at scale, beyond boundaries of service domains,
organizations, policies and stakeholders. We named this component as Flexible Compute
Virtualization architecture (see Figure 2), whose services should be able to i) handle het-
erogeneous virtualization technologies at the server level, ii) provide uniform means for
the building of different virtualization images (VM, containers, etc.), and iii) manage the
orchestration of a distributed computing resources platform formed of edge and central
data centers. Towards these ends, at the Flexible Compute Virtualization Architecture,
we need to address the following four problems:

� Resource efficiency.
Local, individually owned IoT infrastructures, such as those in public areas of the
smart cities, offices and ordinary homes, normally have relatively small amounts
of resources in comparison to centralized data centres. Typically they deploy IoT
gateway devices based on embedded boards, which manage sensors, cameras and/or
actuation devices. Similarly, at the edge of big clouds, relatively a small numbers
of racks will usually cover the cloud owner’s locally offered services, and connect
to the centralized data centres as much as possible. The individual servers in the
racks will have high compute capacity, but at a limited scale due to physical space
constraints, and yet they are required to serve millions of clients at high request
rates.

� Deployment flexibility.
Ideally, app developers would like to be able deploy their new services in any plat-
form, but in reality individual IoT infrastructures will provide different platforms:
one would provide container instances for efficiency and manageability, but another
would offer VM instances for isolation. It is clearly painful if the users or developers
need to adapt or re-implement their services to the different platforms. In other
words, we need to decouple the platform adaptation from service implementation
and provisioning. But today, there exists no such framework.

� Resource isolation.
IoT gateway devices and edge servers will need to accommodate compute instances,
such as VMs or containers, which have different requirements in terms of perfor-
mance, policies and security, within the same bare-bones hardware or cluster. Näıve
design would always instantiate compute resources as VMs, which have strong iso-
lation property between each other, or against the underlying hypervisor. However,
as their footprint is very large, this strategy could result in low efficiency. On the
other hand, instantiating all of the compute resources as containers, which share the
OS kernel components, results in poor resource isolation in terms of performance
and privacy, or violates security requirements.

� Functional flexibility.
Today’s applications, even those inside IoT gateways, are highly complex. For ex-
ample, the use of NGSI/oneM2M/NGSI-LD for Virtual Silos, in reality, requires the

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 69 of 85

IP/TCP/TLS/HTTP protocol stack. Individual protocol implementations would
also be very complex. For example, we need sophisticated congestion control and
loss recovery algorithms of TCP for timely data delivery over the Internet, which is
much more than the legacy TCP specification or RFC793. Further, if the devices
are exposed to the Internet, they also require general security mechanisms like a
firewall. At the other end of the spectrum, if the device requires extremely simple
a service, for instance sending static IPv6 packets at a constant interval without
delivery guarantee, the fully-fledged protocol stack is overkill. Provisioning func-
tionality, kernel modules or libraries bloat instance footprints. This exacerbates
service density and resiliency (e.g., to deploy or migrate services) issues.

In the next subsections we begin to describe the first steps we have taken in designing
the Flexible Compute Virtualization architecture. We started with the design of the
server level architecture, i.e. the set of functionality needed on the servers where the
VirIoT components are to be virtualized. The main novelties, i.e. the use of Unikernels
and LibOS, were introduced with the aim of distributing VirIoT components on low
power servers, located on the edge of the network, i.e. where the use of simple VMs or
Docker containers might not be possible.

Orchestration and integration of geo-distributed servers/data-centers will be the focus
for upcoming work and forthcoming deliverables, instead.

5.1 Server level compute architecture

In order to have both efficiency and flexibility, we need to be able to decouple each
other the three fundamental dimensions: functionality, isolation and service implemen-
tation, and maximize for efficiency at the same time. Accordingly, at the server level, we
want to design a Flexible Compute Virtualization (FCV) architecture in which the same
VirIoT component can be easily packaged by means of different virtualization technolo-
gies to adapt to different IoT compute infrastructures, while using a unified building tool:
Unikraft. In addition to targeting the platform, Unikraft may build application code in
the optimal way, in order to minimize resource utilization and security and privacy re-
quirements. To this end, we use two essential technologies, which can be used alone or
in combination:

� Unikernel
In our flexible virtualization architecture, we achieve resource efficiency by enabling
Unikernel instances wherever possible. A Unikernel is a monolithic, single-address
space kernel that additionally embraces application(s) in it, without a user-space
context. It thus avoids context switches that are expensive for low-latency, high-
throughput services. Further, since the kernel can be application-specific and thus
minimalistic, disk or memory footprints of Unikernel can be very small. Last but
not least, for the same reason, many specialization opportunities in the kernel-level
services are available. Unikernels can be built by using different tools, including
our Unikraft, which embeds in the Unikernel image the so called Unikraft libraries.

� Library Operating Systems
Typically, system-level services, such as device I/O, file systems and network pro-

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 70 of 85

tocols, are implemented as a part of the operating system kernel, usually in mono-
lithic form. When using the Library Operating Systems (LibOSes) approach, on
the other hand, we run such OS kernel components as user-space libraries, named
Linux Kernel Libraries (LKL). This provides high flexibility of deployment, be-
cause portability of the user-space code is much higher than that of the kernel
code. Since LibOSes usually port a f ull-fledged, production-quality OS kernel code
into the user-space, the applications that link LibOSes can benefit from the rich
functionality.

Unikernels and LibOSes concepts provide us a significant starting point to enable the
flexible virtualization platform that we need especially when a low footprint is necessary,
but we must address many technical challenges. Problems in Unikernels include difficulty
to build optimized instances for different applications. The developer needs to understand
OS features or libraries required by the individual application.

Further, since Unikernels often require custom components, it is sometimes impossible
to meet functional requirements. For example, advanced TCP features, such as TCP BBR
or Rack, are impossible to use in the Unikernels available today. LibOSes, although being
able to address both of the above problems with Unikernels, can only run as user-space
applications, meaning that LibOS instances cannot be Unikernels.

In summary, we are able to progressively implement our FCV architecture by facing
the following three technical problems:

� Possibility to assemble VirIoT components as Unikernels that are as feature-rich as
regular OS kernels.

� Ability to implement VirIoT components exploiting a LibOS both as a Unikernel,
and as a real OS kernel.

� Automatic instantiation and deployment in a distributed cloud of heterogeneous
optimized images (Docker, plain VMs, Unikernels, etc.).

As shown in Figure 36, the result is that VirIoT components, such as ThingVisors
or Virtual Silos, requiring different system features depending on their functionality and
services, can be instantiated anywhere, and they can be packaged as:

� Linux containers, which include the VirIoT components’ software, related li-
braries and binaries, and possibly additional libraries (Unikraft Libraries or Linux
Kernel Libraries) enabling the easy repackaging of the image in different formats,
e.g. Unikernel image. The supported containers will be the plain Docker ones1, but
also those based on Unikraft Libraries or Linux Kernel Libraries that may require
a different container runtime (e.g. runu instead of runc).

� Light Virtual Machines based on Unikernels, which include the software of
the VirIoT component and either Unikraft or Linux Kernel Libraries. Light VMs
will run on top of an off-the-shelf Hypervisor (possibly bare-metal), such as Linux
KVM.

1This is the current implentation of VirIoT

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 71 of 85

Compute hardware

Linux Kernel
Libraries

Unikraft
Libraries

user

Linux Kernel
Libraries

Unikraft
Libraries Linux Kernel

user
kernel

U
nikraft buildtool

VirIoT
component

VirIoT
component

VirIoT
component

VirIoT
component

VirIoT
component

CONTAINERS UNIKERNEL VIRTUAL MACHINES

Linux Kernelkernel

VirIoT
component

and Bins/Libs

Container runtime (runc, runu, etc.)

PLAIN
VIRTUAL
MACHINES

Bare Metal Hypervisor (kvm, Xen, ESXi, etc.)

Figure 36: Flexible Compute Virtualization Architecture, server level

� Plain Virtual Machines, including a fully-fledged kernel and the VirIoT compo-
nent software.

The related images (containers or VMs) can be built by using the Unikraft unified tool
depicted as a vertical rectangle in the rightmost position of the figure .

In this section we describe this, server level, compute virtualization architecture, re-
ferring to Figure 36, and we give the links to the paragraphs of the next sections, where
the technical solutions are detailed.

As a design recommendation, when complex ThingVisors or vSilos are to be imple-
mented, then the choice for having a light VM will be to use a LibOS images Section 5.3,
possibly packaged as Unikernel. Otherwise, Unikraft libraries (refer to Section 5.2) and
Unikernels will be used if ThingVisor or VirtualSilo do not require much system-level
functionality, for the highest efficiency and smallest footprint. Such a design recommen-
dation can be applied only when the the platform permits deployment of VMs, i.e. has
a suitable Hypervisor. Otherwise the target will be a container of user-space applica-
tion. In any case, Unikraft build tool will hide the target platform differences from the
developers.

5.2 Unikraft

Unikraft was motivated by a number of past Unikernel or related projects, such as Mi-
rage [8], OSv [9], ClickOS [10] and IncludeOS [11], which demonstrate the small footprint
and scalability of Unikernels, and performance enabled by related technologies such as
user-space packet I/O frameworks [12, 13] and scalable software switches [14, 15]. Uniker-
nels are small because they do not need the generality required by general-purpose, mono-
lithic kernels that support a wide range of applications; instead, individual Unikernels
support only their target applications, possibly exploiting domain-specific optimization
opportunities, such as known workloads. Small-footprint Unikernels are particularly use-
ful when they are deployed in resource-constrained environments, such as IoT gateways,
and when massive numbers of instances (e.g., ThingVisor and VirtualSilo) must be de-
ployed (e.g., at the IoT edge).

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 72 of 85

unikernel
binaries

architecture
library pool

main
library
pool

platform
library pool

libarm32.olibx86_64.o

libxenplat.o

unikraft_container_x86_64

unikraft_container_Arm32

unikraft_container_Arm64

unikraft_xen_x86_64

unikraft_xen_Arm32

unikraft_xen_Arm64

unikraft_kvm_x86_64

unikraft_kvm_Arm32

unikraft_kvm_Arm64

network stack
liblwip.o

libopenssl.o
...

SE
LE

CT
AP

P
1

SE
LE

CT
 U

NI
KR

AF
T

LI
BS

2

BUILD3

RU
N

4

Python program

libkvmplat.o

libarm64.o

libcontainerplat.o

file systems
libvfs.o
libramfs.o

lib9pfs.o

schedulers
libcoop.o
libpreempt.o

librt.o

standard libs
libc.o

libnewlibc.o
libmusl.o

drivers
libconsole.o

libnetdev.o
libblockdev.o

memory allocators
libbuddy.o

libheap.o
libmempool.o

runtimes
libpython.o

libgo.o
...

debug & profiling
libperf.o

libukdebug.o
...

Go program Web server . . .

Figure 37: Unikraft Concepts.

Unfortunately, these large advantages do not come for free. Unikernels suffer from
the rather tedious process or high engineering costs of composing a different Unikernel
for every application. For example, since ClickOS always runs Click as its application,
different packet processing applications can be implemented taking the advantages of the
flexibility offered by Click modular router [16]. However, it cannot go beyond Click or
packet processing applications; building a new application requires the whole Unikernel
redesigned. The similar goes true for Mirage; the applications must be written in OCaml,
significantly limiting design and optimization opportunities. Unikraft is designed exactly
to solve these problems.

Unikraft is an end-to-end framework that builds Unikernels based on modular, fine-
grained libraries using its unified built tool (Figure 37). These libraries include memory
allocators, networking interface abstraction, various scheduling algorithms, and standard-
compliant glibc. Because of the library nature, Unikraft can be used not only to produce
Unikernels, but also to build user-space applications based on the same libraries. This is
a great advantage, because the application can be built in the form of any of Unikernel or
user-process (i.e., container application), while guaranteeing the identical functionality,
which largely contributes to enabling our flexible compute virtualization architecture
(Figure 36). Unikraft is an active open source project under Linux foundation. Figure 37

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 73 of 85

illustartes the Unikraft framework.

5.2.1 Support for Containers

Although Unikraft has a large potential, some important features required to achieve
Fed4IoT’s flexible compute virtualization architecture are unavailable. The first one is
the support for containers managed by Docker framework. Containers are lightweight
compute instances that have individual file system trees and network interfaces. Con-
tainer instances share the OS kernel, but compute resources are isolated by the kernel
mechanism called cgroup. Containers are typically managed by some frameworks, such
as Docker [17] and Cloud Foundry [18], to package and deploy container images.

To integrate with the Fed4IoT virtualization stack, adding support for containers in
Unikraft necessitates a top-down approach. As described in Section 3, Fed4IoT can use
FogFlow for the design of ThingVisors, and FogFlow relies on Docker. Therefore, our
goal here is that Unikraft supports Docker-based containers.
OCI Image Format.

We have decided to add support for OCI Image Format [19] (OCIIF), which is a
popular container image format defined by Open Container Initiative [20], as Unikraft
images. A single image consists of metadata about the contents, dependencies of the
image, and filesystem changeset that describes the serialized filesystem and changes made
on it.

Unikraft provides support for running a container application. Currently to run
Unikraft application within a container we need to fetch the OCI runtime, generate a
runtime specific configuration file config.json and a root file system containing the ap-
plication to execute. This provides us a bare minimal support for running a Unikraft
application within a container. The container platform is integrated within Unikrafts
build system as an external platform. The user of the platform configures Unikraft build
system to create an container image with the structure shown in Figure 38.

The build system gives user the following configuration options: With this configura-
tion you can run a Unikraft application within a container. The Unikraft build system
produces the rootfs and a config.json which the container runtime uses to run Unikraft
application within a container. The rootfs of the container contains the Unikraft applica-
tion and the device file needed by the application. There are no external libraries needed
the application is a self sufficient image containing all the libraries it requires. The oci
runtime does not setup the network interfaces for the container application. We need to
explicitly configure the network interface.
Boottime networking.

Since Docker communicates with container instances for a number of reasons, we need
to enable this. In particular, since the original Unikraft images are instantiated by Xen
control plane without the use of any networking features, we need to enable Unikraft
images to support network interfaces and configuration.

To support network interface within a container environment we need to establish a
pair of host and guest virtual Ethernet interface. The guest interface is added to the
network namespace belonging the container. The guest interface acts as the network
interface through which the application within the container interact with the outside
world. On the host end, a bridge is created and the host end of the virtual Ethernet is

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 74 of 85

Figure 38: Unikraft Container Image Configuration.

configured to be a slave of the bridge device. The network is setup as a prestart hook.
The hook script is called before switching the mount namespace within the container.

For Unikraft to establish a network connection in the container environment, we create
a tap interface in the container environment. The tap device read onto the traffic received
on the guest end of the virtual Ethernet. The tap interface is created and associate with
a bridge on Unikraft boot up. Since Unikraft has user level network stack lwip running
within it the l2 packets received on the tap device are forward into the lwip stack and
processed by the application. The diagram below gives an overview of the design.

A post start hook setup the network interface. Figure 41 illustrates how it is estab-
lished.

5.3 Linux Kernel Library

5.3.1 Background

The growth of container architecture and its ecosystem, and development, integration
and deployment of programs is nowadays not a headache anymore, thanks to a powerful
and flexible environment of underlying virtualization technologies. At the same time,
when facing, for instance, the development of a large smart-city platform involving dis-
tributed computation across cloud and edge devices, the conventional container system
meets stricter requirements of even smaller footprint of the execution environment while
avoiding functional degradation to the container runtime. Although the conventional
container architecture, or operating system virtualization based on software partitioning,
with the namespace technique, has a lightweight advantage when compared to the full
machine virtualization with hardware-assisted partitioning, however, as several studies
reveal [21, 22, 23, 24], containers still have room for even lighter weight when considering
the execution of a set of small programs (a.k.a. micro-services).

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 75 of 85

Figure 39: Unikraft Network Configuration.

Figure 40: Unikraft Application and Networking in Container Environment.

5.3.2 Existing Solutions

Prior works have also tried to address the issue. Their approaches are varied: [21] tried
to reduce the size of container image by splitting into slim and fat images, where the fat
image contains tools and the slim image only contains main application so that runtime
footprint could be reduced. This approach could offer full feature-set of underlying host
systems but supported platforms are limited to host systems if there are no emulation of
the deployed images.

Unikernels ([8][9][25]) offer specialized, small guest kernel over hypervisor which has
smaller resource usage by combining user- and kernel-space in their runtime memory lay-
out. This integration also contributes smaller runtime overhead by eliminating context
switches which happen during I/O operations. Moreover, due to its nature of hypervisor
use, the restriction of underlying system is also relaxed, so that we can cover more vari-
ous devices. However, even several unikernels implementations ([26][9]) offer the binary
compatibility to Linux, but the compatibility layer is always incomplete as underlying
kernel (in unikernel) is not Linux.

According to the observation from past studies, the lightweight property of virtual-

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 76 of 85

Figure 41: Host Networking Setup with Unikraft and Container.

ization with the various platform support is achieved by paying additional tax for the
feature richness. We are trying to fill this gap in our proposed software.

5.3.3 Linux Kernel Library: Rich Feature-set with Specialized Kernel

Our motivation here to develop Linux kernel fitting into our requirements to provide
specialize Linux kernel feature without losing the original, mature Linux kernel. Thus
the binary compatibility property is simply one of the feature that the original Linux
kernel can.

Our design decision follows stand on the shoulders of giants, where we will try to
avoid writing code and rather we will try to re-shape the mature code base to address
more specialized requirement. Thus, Linux Kernel Library (LKL) was designed. LKL is
originally aiming to allow reusing the Linux kernel code as extensively as possible with
minimal effort and reduced maintenance overhead. It was proposed around 2007 but
we have recently developed the LKL so that we can address further use cases, including
lightweight property of application runtime.

Unlike other userspace ports of the Linux kernel such as User-mode Linux (UML) [27],
LKL aims to be a reusable library in a variety of environments so that programs can link
to the components of OS features implemented in the Linux kernel as a library OS. As
illustrated in Figure 42, LKL introduces a hardware-independent architecture in the Linux
kernel tree by decoupling the LKL host environment (machine/environment-dependent
code) from the Linux kernel, largely contributing to the platform independence of this
library.

As LKL takes the minimum-additional-code approach, it has other benefits. An ap-
plication running with the LKL has its richness of Linux features, such as the latest
protocols or algorithms inherited from the Linux kernel. This is not possible for other

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 77 of 85

Linux kernel
fs net

virtio mm crypto

time

(hw independent) LKL Architecture

hijack lib (musl) libc

Application

LKL host environment

Linux FreeBSD WindowsmacOS qemu
(x86_64/arm)

LKL
API

Andriod
(arm/arm64)

LKL syscall API

posix win32 rump-
hypcall

Figure 42: Structure of LKL as a portable and reusable library of the Linux kernel.

supersized kernel approach as those implement Linux feature from scratch. Additionally,
thanks to the decoupled design of machine/environmental dependent code into the host
environment, the porting effort to non-Linux platform is relatively easy. The latest LKL
can run on top of not only Linux host, but also Windows, FreeBSD, macOS, inside UEFI
bootloader, Android phone (which is hard to upgrade kernel).

5.3.4 Docker Integration

Interfacing to container infrastructure with LKL is important since VirIoT platform
(V2.2) is already developed on Docker/Kubernetes infrastructure, thus LKL with con-
tainer interface would not request changes to the VirIoT orchestrator (master controller).
Our docker integration is not just to provide a wrapper script for LKL-ed programs in
order to use via docker client command, but more tightly coupled with the infrastructure
by offering plug-in module container runtime. With this runtime, named runu, users
benefits of LKL with fully-featured, and customized Linux kernel for container instance.

The implementation of the runu runtime has two aims: 1) to invoke a LKL-ed process
that includes libOS and 2) to bridge the interface of the standardized runtime specification
by Open Container Initiative [20]. The implementation allows us to replace the default
runtime environment (runc) with our custom one via a command-line option for the
container invocation to preserve the portability of the container usage model.

Because of the cross-platform support of the Go language, the implementation of
runu is quite straightforward on both Linux and macOS, which are the currently tested
platforms. We also have integrated 9pfs server functionality2 to share a filesystem layout
from a container image to a container instance.

2https://github.com/docker/go-p9p

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 78 of 85

https://github.com/docker/go-p9p

5.3.5 Preliminary Evaluations

Our preliminary evaluations consist of two parts to confirm 1) the lightweight property
of container instantiation, and 2) the measurement study of feature richness of network
stack.

In the mind of serverless platform use cases, where the container instances are fre-
quently started and terminated upon the requests from users, we measured the duration
of a simple Python program execution that is ready to listen to a socket. Although
the result involves other preparatory elements, such as filesystem and network interface
creation and several message interactions between the container engine and runtime to
manage container life-cycle, we used the docker run command to invoke a container
instance because it reflects the typical use cases of serverless deployments.

The experiments were conducted on two machines, Dell PowerEdge R330 with a 4-
core 3.8 GHz Xeon E3-1200 and 64 GB memory, interconnected via an Intel X540 10
Gbps link. The machines ran the Linux 4.18.5 kernel in the Fedora release 28 and used
Docker 18.06.1-ce for the container framework. To compare runu (our implementation
for container runtime to instantiate LKL-ed applications) with other approaches, we used
the Kata container [28] version 1.8.0 with the 4.19.28-48.1 Linux kernel, gVisor [29] from
the git e9ea7230 revision, Nabla containers [30] from git 2cecc88 revision, a native Linux
application on the host kernel without containers, and runu runtime environment. The
base Linux kernel in the LKL was version 4.19.0.

 0

 500

 1000

 1500

 2000

runc kata gvisor(p) gvisor(k) nabla runu native

D
e

la
y
 (

m
s
e

c
)

955.6

1635.6

1264.4
1172.2

1326.7

725.6

41.1

Figure 43: The duration of Python script execution from 30 measurement iterations (with
the mean values).

Figure 43 plots the result of this measurement with the standard deviation from
30 repetitions. The duration of the (Linux) native Python program is about 41 ms,
and this can be used as a baseline for typical process instantiation in the host system.
The standard Docker runtime environment (runc) takes 956 ms, requiring configurations
such as signal handler installations, system call filtering to the host kernel, followed by
multiple process invocations. gVisor (gvisor(p), gVisor with ptrace system call trap, and
gvisor(k), with a trap via a KVM) do not utilize the namespace facility, but require even
more time (1264 ms and 1172 ms) because of the overhead of its context switches across
multiple system calls. Nabla container (nabla) shows longer duration to others except
Kata, 1327 ms, and this is also slower than that presented in their paper [25] because
our measurement involves multiple containers and OCI runtime interactions while their
paper may not include these considerations. The Kata container (kata) takes 1635 ms,
and this is shorter than a typical virtual-machine instantiation but slightly longer than

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 79 of 85

that required by the other approaches and represents the cost of transparent hardware
virtualization. runu runtime environment takes 726 ms, and this is the fastest among
all OCI runtimes including the result of runc, although it also involves an additional
filesystem mount to load Python library files.

Next, we tried to measure the level of maturity of network stack implementation
by testing the conformance of the implementation. We used Ixia IxANVL (automated
network validation library) [31], a software utility, to validate network protocol compliance
and interoperability. By running a set of test suites to verify the behavior of network
stack, based on standard specifications of IETF RFCs, the tool reports the number of
successful tests for each network stack implementation. We use the reported number as
the level of maturity of network stacks.

We used lwIP (git 7b7bc349 revision), Seastar (git c19219ed revision), OSv version
v0.24, gVisor (git faa34a0 revision), mTCP (git 611cc05d revision), rump kernel (git
f10683c revision of buildrump.sh), LKL (git 5221c547af3d revision- based on Linux 4.16.0
version), and native Linux kernel (4.15.0-34 version). We used IxANVL version 9.19.9.32
(Linux) and ran the following test suites for the conformance tests: ARP, IPv4, and
ICMPv4.

lwip

seastar

osv

gvisor

mtcp

rump

linux

lkl

linux-nz

lkl-nz

(a) ARP

lwip

seastar

osv

gvisor

mtcp

rump

linux

lkl

linux-nz

lkl-nz

(b) IPv4

lwip

seastar

osv

gvisor

mtcp

rump

linux

lkl

linux-nz

lkl-nz

(c) ICMPv4

Figure 44: Conformance test results (IxANVL) for network protocol based on RFC spec-
ifications (Pass=green, Failed=red/yellow).

Figure 44 visualizes the result of this measurement. The matrix in the figure is
interpreted as follows: the x-axis is a sequence of test cases, and green box indicates that
a test is passed (succeed) while red and yellow box are failed tests. The gray box indicates
that the test are not conducted due to the restriction of a particular implementation (e.g.,
following tests are not able to conduct due to previous test’s failure). Of all the tests
conducted, the conformance of LKL is the best to the others while achieving the identical

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 80 of 85

results with the test of typical Linux kernel.

5.3.6 Further Steps

We have accomplished, by the several results described in this deliverable, the design
and implementation of a working container and virtualization system using LKL. Our
next step is to further eliminate unnecessary part of image contents, in order to reduce
the storage and memory footprint. Small storage footprint will contribute the shorter
download time of container images, while small memory footprint contributes to relax
runtime limitations under scarce-resource environments.

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 81 of 85

6 Conclusion

This deliverable has described the many details of the the Fed4IoT Virtualization Stack,
including both IoT (previously reported in D2.2) and compute virtualization aspects.
The whole system is centered around a plethora of facilities such as tools to ease de-
velopment and deployment tasks (i.e. FogwFlow, Service Function Chaining) as well as
a Flexible Compute Virtualization based on Unikernels and library OSs, which focuses
on lightweight and rich environments. Those components are working together towards
the goal of a widely-distributed, inter-operable platform for IoT virtualization, which can
span state-of-the-art cloud- and edge- based infrastructures.

Further studies are still ongoing, and the next D3.2 release of the deliverable will cover,
at least, the compute orchestration technology for edge/cloud deployment of Fed4IoT
components (considering also 5G/NFV solutions), more advanced implementations (e.g.
ThingVisors and vSilo Flavours using FogFlow, Unikernels, etc.) that consider distributed
deployment on edge nodes together with light compute virtualization, and system level
performance evaluations, which are still missing at this stage.

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 82 of 85

References

[1] NEC Labs Europe, “FogFlow tutorial,” https://fogflow.readthedocs.io/, (Accessed
November 26th 2019).

[2] H. Topcuoglu, S. Hariri, and Min-You Wu, “Performance-effective and low-
complexity task scheduling for heterogeneous computing,” IEEE Transactions on
Parallel and Distributed Systems, vol. 13, no. 3, pp. 260–274, March 2002.

[3] H. Arabnejad and J. G. Barbosa, “List scheduling algorithm for heterogeneous sys-
tems by an optimistic cost table,” IEEE Transactions on Parallel and Distributed
Systems, vol. 25, no. 3, pp. 682–694, March 2014.

[4] M. C. Luizelli, W. L. da Costa Cordeiro, L. S. Buriol, and L. P. Gaspary, “A fix-and-
optimize approach for efficient and large scale virtual network function placement
and chaining,” Computer Communications, vol. 102, pp. 67 – 77, 2017.

[5] D. Bhamare, M. Samaka, A. Erbad, R. Jain, L. Gupta, and H. A. Chan, “Multi-
objective scheduling of micro-services for optimal service function chains,” in 2017
IEEE International Conference on Communications (ICC), May 2017, pp. 1–6.

[6] L. Wang, Z. Lu, X. Wen, R. Knopp, and R. Gupta, “Joint optimization of service
function chaining and resource allocation in network function virtualization,” IEEE
Access, vol. 4, pp. 8084–8094, 2016.

[7] M. T. Beck and J. F. Botero, “Scalable and coordinated allocation of service function
chains,” Computer Communications, vol. 102, pp. 78 – 88, 2017.

[8] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh, T. Gazagnaire,
S. Smith, S. Hand, and J. Crowcroft, “Unikernels: Library operating systems for
the cloud,” Acm Sigplan Notices, vol. 48, no. 4, pp. 461–472, 2013.

[9] A. Kivity, D. Laor, G. Costa, P. Enberg, N. HarEl, D. Marti, and V. Zolotarov, “Os-
voptimizing the operating system for virtual machines,” in 2014 {USENIX} Annual
Technical Conference ({USENIX}{ATC} 14), 2014, pp. 61–72.

[10] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco, and F. Huici,
“Clickos and the art of network function virtualization,” in 11th {USENIX} Sym-
posium on Networked Systems Design and Implementation ({NSDI} 14), 2014, pp.
459–473.

[11] A. Bratterud, A.-A. Walla, H. Haugerud, P. E. Engelstad, and K. Begnum, “In-
cludeos: A minimal, resource efficient unikernel for cloud services,” in 2015 ieee
7th international conference on cloud computing technology and science (cloudcom).
IEEE, 2015, pp. 250–257.

[12] L. Rizzo, “Netmap: a novel framework for fast packet i/o,” in USENIX Annual
Technical Conference (USENIX ATC 12), 2012, pp. 101–112.

[13] Intel, “Intel DPDK: Data Plane Development Kit,” http://dpdk.org/, Sep. 2013.

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 83 of 85

https://fogflow.readthedocs.io/
http://dpdk.org/

[14] M. Honda, F. Huici, G. Lettieri, and L. Rizzo, “mswitch: a highly-scalable, modular
software switch,” in Proceedings of the 1st ACM SIGCOMM Symposium on Software
Defined Networking Research. ACM, 2015, p. 1.

[15] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme, J. Gross,
A. Wang, J. Stringer, P. Shelar et al., “The design and implementation of open
vswitch,” in 12th {USENIX} Symposium on Networked Systems Design and Imple-
mentation ({NSDI} 15), 2015, pp. 117–130.

[16] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The click modular
router,” ACM Transactions on Computer Systems (TOCS), vol. 18, no. 3, pp. 263–
297, 2000.

[17] Docker, “Docker: Enterprise Container Platform ,” https://www.docker.com.

[18] Cloud Foundary, “Open Source Cloud Application Platform ,” https://www.
cloudfoundry.org.

[19] OCI Image Format Specification, https://github.com/opencontainers/image-spec.

[20] OCI Initiative, “OCI Image Format Specification ,” https://www.opencontainers.
org.

[21] J. Thalheim, P. Bhatotia, P. Fonseca, and B. Kasikci, “Cntr: Lightweight
OS containers,” in 2018 USENIX Annual Technical Conference (USENIX ATC
18). Boston, MA: USENIX Association, 2018, pp. 199–212. [Online]. Available:
https://www.usenix.org/conference/atc18/presentation/thalheim

[22] E. Oakes, L. Yang, D. Zhou, K. Houck, T. Harter, A. Arpaci-Dusseau, and R. Arpaci-
Dusseau, “SOCK: Rapid Task Provisioning with Serverless-Optimized Containers,”
in Proceedings of the USENIX Annual Technical Conference (USENIX ATC18),
2018.

[23] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift, “Peeking behind the curtains
of serverless platforms,” in 2018 USENIX Annual Technical Conference (USENIX
ATC 18). USENIX Association, 2018, pp. 133–146.

[24] R. Koller and D. Williams, “Will Serverless End the Dominance of Linux in
the Cloud?” in Proceedings of the 16th Workshop on Hot Topics in Operating
Systems, ser. HotOS ’17. New York, NY, USA: ACM, 2017, pp. 169–173. [Online].
Available: http://doi.acm.org/10.1145/3102980.3103008

[25] D. Williams, R. Koller, M. Lucina, and N. Prakash, “Unikernels as processes,”
in Proceedings of the ACM Symposium on Cloud Computing, ser. SoCC
’18. New York, NY, USA: ACM, 2018, pp. 199–211. [Online]. Available:
http://doi.acm.org/10.1145/3267809.3267845

[26] P. Olivier, D. Chiba, S. Lankes, C. Min, and B. Ravindran, “A binary-
compatible unikernel,” in Proceedings of the 15th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, ser. VEE 2019.

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 84 of 85

https://www.docker.com
https://www.cloudfoundry.org
https://www.cloudfoundry.org
https://github.com/opencontainers/image-spec
https://www.opencontainers.org
https://www.opencontainers.org
https://www.usenix.org/conference/atc18/presentation/thalheim
http://doi.acm.org/10.1145/3102980.3103008
http://doi.acm.org/10.1145/3267809.3267845

New York, NY, USA: ACM, 2019, pp. 59–73. [Online]. Available: http:
//doi.acm.org/10.1145/3313808.3313817

[27] J. Dike, “User Mode Linux,” in Proceedings of the 5th Anual Linux Showcase and
Conference, ser. ALS’01. USENIX Association, 2001, pp. 3–14.

[28] The OpenStack Foundation, “Kata Containers,” https://katacontainers.io/, (Ac-
cessed Aug 15th 2018).

[29] Google Inc., “gVisor: Container Runtime Sandbox,” https://github.com/google/
gvisor, (Accessed May 8th 2018).

[30] IBM, “Nabla Containers,” https://github.com/nabla-containers/runnc, (Accessed
July 3rd 2019).

[31] Ixia, “IxANVL,” https://ixia.keysight.com/resources/ixanvl-overview, (Accessed
Sep 14th 2018).

Fed4IoT Del. 3.1: Cloud Oriented Services - First Release Page 85 of 85

http://doi.acm.org/10.1145/3313808.3313817
http://doi.acm.org/10.1145/3313808.3313817
https://katacontainers.io/
https://github.com/google/gvisor
https://github.com/google/gvisor
https://github.com/nabla-containers/runnc
https://ixia.keysight.com/resources/ixanvl-overview

	Fed4IoT Glossary
	Introduction
	Purpose of the Document
	Executive Summary
	Quality Review

	The Fed4IoT Virtualization Stack
	IoT Cloud-Oriented Services
	VirIoT REST API and Command Line Interface
	Registration
	Unregistration
	Login
	Logout
	Create Virtual Silo
	Destroy Virtual Silo
	Add Virtual Thing
	Delete Virtual Thing
	Add ThingVisor
	Delete ThingVisor
	Add Flavour
	Delete Flavour
	Inspect Tenant
	Inspect Virtual Silo
	Inspect ThingVisor
	List ThingVisors
	List Flavours
	List Virtual Silos

	VirIoT Internal Procedures and Data Flow
	User management procedures
	Virtual Silo Procedures
	ThingVisor procedures
	SystemDB

	Developed ThingVisors and Virtual Silo Flavours
	ThingVisors
	Virtual Silo Flavours

	ThingVisor Advanced Orchestration and Development Tools
	FogFlow
	System Overview
	Intent-based Programming Model
	Context Aware Service Orchestration
	FogFlow-based ThingVisor

	Service Function Chaining
	Implementation of Service Functions
	Deployment and Selection
	Communications Mechanisms for Service Function Chaining
	Performance Evaluation

	Flexible Compute Virtualization Architecture
	Server level compute architecture
	Unikraft
	Support for Containers

	Linux Kernel Library
	Background
	Existing Solutions
	Linux Kernel Library: Rich Feature-set with Specialized Kernel
	Docker Integration
	Preliminary Evaluations
	Further Steps

	Conclusion
	Bibliography

