
Federating IoT and cloud infrastructures to provide scalable and interoperable Smart
Cities applications, by introducing novel IoT virtualization technologies

EU Funding: H2020 Research and Innovation Action GA 814918; JP Funding: Ministry of

Internal Affairs and Communications (MIC)

Deliverable 4.1

Smart-city information sharing services - First release

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 1 of 103

Ref. Ares(2020)7937306 - 01/01/2020

Deliverable Type: Report
Deliverable Number: 4.1

Contractual Date of Delivery to the EU: 31.12.2019
Actual Date of Delivery to the EU: 31.12.2019

Title of Deliverable: Smart-city information sharing ser-
vices - First release

Work package contributing to the Deliverable: WP4
Dissemination Level: Public

Editor: Frank Le Gall (EGM), Hidenori
Nakazato (WAS)

Author(s): Giuseppe Tropea, Andrea Detti,
Ludovico Funari (CNIT); Ahmed
Abid, Benoit Orihuela, Hamza
Baqa (EGM); Hidenori Nakazato,
Kenji Kanai (WAS); Juan A. Mar-
tinez, Juan A. Sanchez, Antonio
Skarmeta (OdinS), Kenichi Naka-
mura (PAN), Martin Bauer (NEC)

Internal Reviewer(s): Andrea Detti (CNIT)
Abstract: This deliverable describes the first

release of the information sharing
services of Fed4IoT, including the
architecture set-up, the information
model used for federation, the API
provided and the security mecha-
nism implemented.

Keyword List: Information sharing; Federation;
Security

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 2 of 103

Disclaimer

This document has been produced in the context of the EU-JP Fed4IoT project which is
jointly funded by the European Commission (grant agreement n° 814918) and Ministry
of Internal Affairs and Communications (MIC) from Japan. The document reflects only
the author’s view, European Commission and MIC are not responsible for any use that
may be made of the information it contains

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 3 of 103

Table of Contents

Abbreviations 9

Fed4IoT Glossary 11

1 Introduction 13
1.1 Purpose of the Document . 13
1.2 Executive Summary . 14
1.3 Quality Review . 15

2 Information Sharing Services 16
2.1 The NGSI-LD standard from ETSI CIM ISG 18

2.1.1 NGSI-LD Information Model and API 19
2.1.2 NGSI-LD architecture . 20

2.2 Semantic Discovery Component . 21
2.3 System vSilo . 24

2.3.1 HTTP-based Information Sharing to External Platforms 25
2.3.2 Distributed System vSilo . 35

2.4 Pub/Sub-based Internal Information Sharing 35
2.4.1 Performance of VirIoT’s MQTT dissemination system 37

2.5 ICN-based Information Sharing for ThingVisor Factory 38

3 Cross-Domain Information Sharing 41
3.1 Introduction . 41
3.2 SenML ⇔ NGSI-LD . 41

3.2.1 SenML overview . 41
3.2.2 NGSI-LD encoding . 42

3.3 NGSIv2 ⇔ NGSI-LD . 43
3.4 oneM2M ⇔ NGSI-LD . 45

3.4.1 Mapping from NGSI-LD to oneM2M 46
3.4.2 Mapping from oneM2M to NGSI-LD 48

4 Analysis of MQTT Clusters 52
4.1 The scaling issue we found . 53

4.1.1 Sub-linear performance scaling . 55
4.2 Performance analysis . 58

4.2.1 Study of the Cluster’s Nodes Variation 60
4.2.2 Study of the Cluster’s Subscribers Variation 62
4.2.3 Study of the Cluster’s Publishers Variation 64
4.2.4 Study of the Zipf Parameter Variation 66
4.2.5 Study of IoT scenario . 67
4.2.6 Greedy Algorithm . 70

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 4 of 103

4.3 Conclusions and impact on the VirIoT architecture 72

5 Security 73
5.1 Introduction and Motivation . 73
5.2 Authentication, Identity Management and Access Control 74

5.2.1 JWT based Access Control . 75
5.2.2 Policy-based Access Control - XACML 78
5.2.3 Distributed Capability-Based Access Control 82
5.2.4 Shi3ld framework: An access control framework for RDF stores . 87

5.3 Data-centric Security . 90
5.3.1 Data-centric Integrity and JSON Digital Signatures 91
5.3.2 Data-centric Privacy and CP-ABE Access Control for Sensitive Data 96

5.4 Distributed Ledger Technology . 97
5.4.1 Smart Contract . 98
5.4.2 Smart contract for Fed4IoT Platform 98

6 Conclusion 100

Bibliography 101

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 5 of 103

List of Figures

1 Fed4IoT architecture including the new System vSilo and Semantic Dis-
covery components. 16

2 RDF standards to capture high-level relations between entities in NGSI-LD. 20
3 Roles and interactions in NGSI-LD architecture. 21
4 External NGSI-LD Federation. 25
5 Distributed NGSI-LD System vSilo. 36
6 MQTT topics for internal information sharing 37
7 MQTT binding for internal data sharing 38
8 Application of ICN in Fed4IoT . 39
9 ICN Message Format for ThingVisor Factory. 40
10 Grasse Use Case Example modeled in NGSI-LD 46
11 oneM2M resource tree of the Grasse Use Case Example 49
12 Cluster example . 52
13 Measured/Expected message rate ratio for 2 ms latency, in case of 1000

topics, 1000 publishers and 1000 subscribers 55
14 Message latency versus input traffic in case of VerneMQ single broker . . 56
15 Message latency versus output traffic in case of VerneMQ single broker . 57
16 Internal and external traffic of an MQTT cluster 58
17 Subscription tree in an IoT scenario . 59
18 Overhead vs Number of nodes in the cluster 61
19 Cluster’s traffic vs Number of nodes in the cluster 62
20 Overhead vs Number of subscribers . 63
21 Cluster’s traffic vs Number of nodes in the cluster 63
22 Overhead vs Number of subscriptions per subscriber 64
23 Cluster’s traffic vs Number of subscriptions per subscriber 64
24 Overhead vs Number of Publishers . 65
25 Cluster’s traffic vs Number of Publishers 66
26 Overhead vs the Zipf parameter . 67
27 Cluster’s traffic vs the Zipf parameter . 67
28 Overhead vs The number of nodes in the cluster 68
29 Cluster’s traffic vs The number of nodes in the cluster 69
30 Overhead vs the fanout . 69
31 Cluster’s traffic vs the fanout . 70
32 Overhead vs Number of nodes in the cluster, 1000 subscribers 71
33 Cluster’s traffic vs Number of nodes in the cluster, 1000 subscribers . . . 71
34 Main interactions of the VirIoT platform 73
35 JWT based login . 76
36 JWT based Access Control . 77
37 XACML Policy Language Model . 79
38 XACML standard overview . 80
39 PAP Main View . 81

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 6 of 103

40 Generalization of the AttributeID . 82
41 Defining different Attributes . 83
42 DCapBAC Operation Model . 84
43 The Shi3ld model at a glance (grey boxes represent core classes). 88
44 The scenario of access control enforcement in the Shi3ld architecture . . . 89
45 The scenario of two digitally-signed Entity fragments being aggregated by

VirIoT . 92
46 Smart contract with Blockchain . 98
47 Exampled smart contract application to Fed4IoT 99

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 7 of 103

List of Tables

1 Abbreviations . 10
2 Fed4IoT Dictionary . 12
3 Version Control Table . 15
4 Summary of NGSI-LD HTTP API usages in the System vSilo 26
5 Sample of senML to NGSI-LD unit code mapping 43
6 First steps towards mapping oneM2M to NGSI-LD 49
7 Publishing rate providing 2 ms of latency versus the number of brokers of

the cluster . 54

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 8 of 103

Abbreviations

Abbreviation Definition
ADN Application Dedicated Node
AE Application Entity
AIMD Additive Increase/Multiplicative Decrease
API Application Programming Interface
ASM Adaptive Semantic Module
ASN Application Service Node
AWS Amazon Web Services
CIM Context Information Management
CSE Common Services Entity
ETSI European Telecommunications Standards Institute
FIB Forwarding Information Base
GE Generic Enabler
HTTP HyperText Transfer Protocol
ICN Information Centric Networks
ICT Information and Communication Technologies
IN Infrastructure Node
IP Internet Protocol
ISG Industry Specification Group
JSON JavaScript Object Notation
MANO MAnagement and Network Orchestration
MMG Morphing Mediation Gateway
MN Middle Node
MQTT Message Queue Telemetry Transport
NGSI Next Generation Service Interfaces Architecture
NGSI-LD Next Generation Service Interfaces Architecture - Linked Data
NSE Network Service Entity
OMA Open Mobile Alliance
PIT Pending Interest Table
PPP Public-Private Partnership
RDF Resource Description Framework
REST Representational State Transfer
SDK Software Development Kit
TCP Transmission Control Protocol
TM Topology Master
TN Task Name
TV ThingVisor
UML Unified Modeling Language
URI Uniform Resource Identifier

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 9 of 103

VNF Virtual Network Functions
vSilo Virtual Silo
vThing Virtual thing
WLAN Wireless Local Area Network

Table 1: Abbreviations

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 10 of 103

Fed4IoT Glossary

Table 2 lists and describes the terms that have been considered relevant in this deliverable.

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 11 of 103

Term Definition

FogFlow An IoT edge computing framework that automatically orches-
trates dynamic data processing flows over cloud- and edge-
based infrastructures. Used for ThingVisor development

Information Centric
Networking

New networking technology based on named contents rather
than IP addresses. Used for ThingVisor development

IoT Broker Software entity responsible for the distribution of IoT infor-
mation. For instance, Mobius and Orion can be considered as
Brokers of oneM2M and FIWARE IoT platforms, respectively

Neutral Format IoT data representation format that can be easily translated
to/from the different formats used by IoT brokers

Real IoT System IoT system formed by real things whose data is exposed trough
a Broker.

System DataBase Database for storing system information

ThingVisor System entity that implements Virtual Things

VirIoT Fed4IoT platform providing Virtual IoT systems, named Vir-
tual Silos

Virtual Silo (vSilo) Isolated virtual IoT system formed by Virtual Things and a
Broker

Virtual Silo Controller Primary system entity working in a virtual Silo

Virtual Silo Flavour virtual silo type, e.g. a ”Mobius flavour” is related to a virtual
silo with Mobius broker, a ”MQTT flavour” refers to a virtual
silo with MQTT broker, etc.

Virtual Thing
(vThing)

An emulation of a real thing that produces data obtained by
processing/controlling data coming from real things.

Tenant User that access the Fed4IoT VirIoT platform to develop IoT
applications through a vSilo

Root Data Domain Set of sources providing IoT information to the VirIoT plat-
form.

Federated system External IoT systems that share information with VirIoT
(through the System vSilo) such as to form a NGSI-LD global
federated system.

System vSilo NGSI-LD vSilo used at system level to share information of
vThings with external NGSI-LD federated systems.

Table 2: Fed4IoT Dictionary

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 12 of 103

1 Introduction

1.1 Purpose of the Document

Deliverable D4.1 focuses on technologies and models used to share information among the
different cross-domain actors of the Fed4IoT architecture that we described in deliverable
D2.2. Specifically, the information sharing solutions hereafter discussed are used to:

• internally share information among the VirIoT components (internal information
sharing);

• externally share VirIoT generated information (by ThingVisors) with other feder-
ated IoT platforms (external information sharing);

• carry out end-to-end cross-domain data model translations, starting from the het-
erogeneous data models used in the Root Data Domain, passing through the NGSI-
LD neutral format internally used in the VirIoT data plane, eventually arriving to
the data model used in vSilos’ brokers.

The deliverable is structured in three main sections covering the above topics, plus
one that carries out a performance evaluation of a critical architectural component, i.e.
the internal MQTT dispatching system.

Section 2 describes internal and external information sharing services. The section
initially provides a revision of the system architecture, identifying technologies and data
models used on the different interfaces. Since many NGSI-LD components [1] (that are
under active specification at the ETSI CIM Industry Specification Group) are used to
implement our information sharing services, the section provides an overview of the NGSI-
LD standard, mainly focusing on those parts where Fed4IoT is contributing, namely the
data model, the API and the architecture. Indeed, the usage of NGSI-LD within a highly
scalable environment, as focused by Fed4IoT, requires us to pay specific attention to
different NGSI-LD aspects including:

• the NGSI-LD data model (see section 2.1.1), which should be able to easily support
the aforementioned cross-domain translations;

• the federated architecture of NGSI-LD (see section 2.1.2) and related API, which
should be able both to create a large scale federation of IoT information systems
where the VirIoT platform is one of them, and to efficiently scale-up and make
distributed specific NGSI-LD components that are internally used in the VirIoT
architecture, such as the Registry Servers and the System vSilo, hereafter described.

Besides, Section 2 describes the new architectural components we introduced to
support the information sharing services, i.e. the Semantic Discovery Component (for
vThings discovery) and the the System vSilo (for external information sharing). Then,
we give details of our pub/sub topic-based control and data plane used for internal in-
formation sharing, and how we investigated, in section 4, its capability to up-scale to

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 13 of 103

high-capacity service levels. Eventually, we describe a possible use of Information Cen-
tric Networkig (ICN) as an information sharing technology to implement distributed
ThingVisors.

In Section 3 we describe and recommend strategies to carry out some end-to-end cross-
domain data model translations by having NGSI-LD as middle/neutral format. Thus,
we considered the following mappings, where NGSI-LD is an end-point: (a) SenML–
NGSI-LD, (b) NGSIv2–NGSI-LD, (c) oneM2M–NGSI-LD. These information models are
often not only domain specific but also tailored to specific needs of their consumers.
This implies that it is often very difficult to achieve a semantic mapping through a
generic processor, even in the case of expressive models (i.e. expressed through RDFS
ontologies). The section discusses these aspects, starting with a simple case (SenML) and
concluding with more a complicated one, i.e. with oneM2M by leveraging SmartM2M
SAREF ontologies.

Finally, in section 5, we describe the security aspects focused by the project up to
now that concern: i) Authentication, Identity Management and Access Control solutions
used by users to access the VirIoT platform; ii) Data Centric security used to secure
the information exchange within VirIoT and in the external federation; iii) the use of a
Distributed Ledger Technology to track the sharing of information between VirIoT and
the source of information in the Root Data Domain.

1.2 Executive Summary

This deliverable is the first deliverable of the D4.x deliverable series, introducing initial
results coming from Tasks 4.1, 4.2 and 4.3.

Task 4.1, Information model, is devoted to set up a generic and extensible model
that covers the information from different domains to facilitate the federation at data
level. Task 4.2, Information sharing federated architecture, is devoted to set up federated
information sharing solutions for multi-domain information interoperability. Task 4.3,
Secure and efficient information dissemination, is devoted to design specific optimizations
for the secure dissemination of information withing the Fed4IoT architecture.

Results in chapter 2 concern an update to the Fed4IoT architecture, which was already
introduced in deliverable D2.2. We introduce new, specific components taking care of
the Information Sharing at various levels (T4.2). We deal with semantic discovery of
information and with sharing of information to external platforms in a federated fashion.
We also focus on internal information sharing among the VirIoT’s platform components,
going into the details of our pub/sub-based control and data planes, and we introduce
preliminary ideas on how to use ICN-centric approach to deploy distributed ThingVisors
(T4.3), i.e. to implement a ”ThingVisor Factory”. The issue of massively scaling-up a
pub/sub topic-based info distribution architecture in analysed, by means of models and
simulation, with great detail in section 4 MQTT Clustering Technologies (T4.3).

Results in section 3 concern the mapping from/to various different heterogeneous
information models, into the reference NGSI-LD model (T4.1).

Results in section 5 concern the security technologies we explored, adopted and

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 14 of 103

adapted in our architecture (T4.2).

1.3 Quality Review

The internal Reviewer responsible of this deliverable is Andrea Detti (CNIT).

Version Control Table

V. Purpose/Changes Authors Date

0.1 ToC Giuseppe Tropea (CNIT) 05/11/2019

0.2 ToC revision, guidelines
and introduction

Franck LE Gall (EGM) 05/12/2019

0.3 Initial NGSI-LD related
content in chapter 2

Benoit Orihuela (EGM) 21/12/2019

0.4 Chapter 2 Information
Sharing Architecture

Martin Bauer (NEC), Andrea
Detti, Giuseppe Tropea (CNIT),
Hidenori Nakazato, Kenji Kanai
(WAS)

22/12/2019

0.5 Chapter 5 Security Juan A. Martinez, Antonio
Skarmeta (OdinS), Giuseppe
Tropea (CNIT), Hamza Baqa
(EGM), Kenichi Nakamura (PAN)

23/12/2019

0.6 Chapter 3 Cross-Doman
Information Model

Ahmed Abid, Franck Le Gall
(EGM), Juan A. Sanchez (OdinS)

24/12/2019

0.7 Chapter 4 MQTT Cluster-
ing Technologies

Andrea Detti, Ludovico Funari
(CNIT)

27/12/2019

0.8 Overall cleanup and har-
monization

Gisueppe Tropea (CNIT) 28/12/2019

0.9 Final review Andrea Detti (CNIT) 30/12/2019

Table 3: Version Control Table

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 15 of 103

2 Information Sharing Services

By Fed4IoT Information Sharing Services we refer to the technologies and data models
used in the VirIoT platform to exchange information on the different interfaces.

Figure 1: Fed4IoT architecture including the new System vSilo and Semantic Discovery
components.

Figure 1 shows the VirIoT architecture, which is an evolution of what we presented
in D2.2, and it highlights the different solutions (NGSI-LD HTTP, PUB/SUB, ICN, etc.)
used to share information on the different interfaces. These solutions are extensively
described in this deliverable.

Firstly, we introduce the two extensions we made to the architecture presented in
D2.2, because they have a key role in the information sharing services:

• We considered the possibility of federating the VirIoT platform with external
IoT platforms, thus forming a federation of cross-domain IoT data, where VirIoT
contributes information through its vThings. The federation makes it possible to
access vThing data not only for users of VirIoT, within their vSilos, but also for
users of other federated IoT systems (external context consumers). For the purpose
of federation, we promote NGSI-LD as the inter-working standard, by creating an

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 16 of 103

NGSI-LD entry-point to the data of our VirIoT platform and by fully supporting
the NGSI-LD API through a System vSilo. All newly created vThings are, by
default, added to the System vSilo, regardless of any other user-owned vSilos. The
System vSilo is based on a NGSI-LD internal broker, so that it is able to export data
from its vThings into NGSI-LD, serving the purpose of an harmonized connector to
external federated platforms. Hence, we allow the VirIoT platform to interconnect
with an external federation of NGSI-LD brokers and an eco-system of cross-cutting
context information consumers and producers.

• We introduced a Semantic Discovery functionality which is used by platform
users (or tenants) to (1) find out what vThings are currently available within the
VirIoT platform, that match specific semantic criteria, in order to add them to their
vSilos or (2) be notified when new vThings appear, that match the set of criteria. In
this case, too, we exploited NGSI-LD components, specifically the Registry Server,
and we defined the interfaces to register and find available data sources based on
descriptors and semantic typing.

In terms of scope of the sharing, Fed4IoT’s Information Sharing Services are organized
along the following macro-areas, depicted in Figure 1.

Internal Information Sharing – whenever we have to design means to pass infor-
mation among components of the VirIoT platform. Internal information concerns both
control and data planes. VirIoT control commands (see D3.x) travel in the control plane,
for instance for switching on and off platform components (vSilos, ThingVisors, etc.), or
configuring them. Data flows, encapsulating vThings’ data items that need to be carried
among platform components (e.g. from ThingVisors to vSilos), travel in the data plane.
The data model used in the data plane comes from NGSI-LD, which is used internally as
a ”neutral format” able to capture the structure and semantics of all other data formats
used within the Root Data Domain (see D2.2, chapter 6). These NGSI-LD data pieces
are transferred using MQTT pub/sub services, based on a cluster of MQTT brokers for
scaling purposes. Most of the information of the control plane uses these MQTT pub/sub
services too (see Section 2.4), but the newly introduced Semantic Discovery component
currently uses the NGSI-LD HTTP API and data model, based on the NGSI-LD Registry
Server (see Section 2.2). We also start to introduce the ThingVisor Factory concept, and
we position it within the Fed4IoT architecture. A ThingVisor Factory is actually a tool
for building distributed ThingVisors, thus exploiting the edge/core flexible computing
virtualization services described in D3.x. Accordingly, an ICN-based request/response
information sharing approach for function chaining is used to implement an ICN-based
ThingVisor Factory (see Section 2.5) 1.

External Information Sharing – whenever we have to share information between
VirIoT and external federated IoT systems. To this aim we can use the System vSilo,
which is based on a NGSI-LD broker. The System vSilo is part of a larger NGSI-LD
architecture formed by a Federated Broker, other NGSI-LD brokers, etc., as discussed in
Section 2.3

1We remind that other solutions (e.g. FogFlow) can be used to build distributed ThingVisors.

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 17 of 103

In what follows we present the NGSI-LD standard, mainly focusing on those parts
where Fed4IoT is contributing to the standardization process because they are used in
the architecture, as previously mentioned. Then we present the new architectural com-
ponents, i.e. the System vSilo and the Semantic Discovery Component. Later we present
the pub/sub topic-based internal information sharing describing topics and messages.
Lastly, we present the sharing of information within the ICN based ThingVisor Factory.

Then, subsequent sections of the deliverable cope with: i) the cross-domain informa-
tion sharing taking place between the Root Data Domain and the VirIoT platform (see
Figure 1); ii) a scalability analysis of the MQTT cluster that supports internal infor-
mation sharing services; iii) security aspects, including distributed ledger technologies to
be used to track sharing of information between the Root Data Domain and the VirIoT
platform, e.g. for business purposes such as selling data.

2.1 The NGSI-LD standard from ETSI CIM ISG

The cross-domain Context Information Management (CIM) is a standardization initiative
from ETSI, in the form of an Industry Specification Group (ISG). It is a group of about 22
ETSI members and 7 non-ETSI organisations that agreed to co-define the core NGSI-LD
specification and many related documents.

The goal of ISG CIM is to develop interoperable software implementations of a cross-
cutting solution for managing context information, named NGSI-LD.

Currently, the following Fed4IoT partners are CIM members/participants:

• NEC

• EGM

• OdinS

• CNIT

Especially relevant to Fed4IoT’s Information Sharing Services is the fact that the
group expects data is re-usable without the applications being part of some specific
“vertical”, integrating across administrative, technological and sometimes also language
boundaries. Having a model for context information (”data about data”) such as who
generated it, when, how, what accuracy, what license, etc., is especially relevant for a
virtualization platform acting as de-coupling intermediary between the sensors’ infras-
tructure (which is producing data) and the data brokering to end-users and applications.

There are two facets of NGSI-LD: (a) the NGSI-LD API which is a means of exchang-
ing Context Information, and (b) the NGSI-LD Information Model which is a meta model
on which the NGSI-LD API functionality is based and which is defined as a high-level
ontology to enable interoperabilty of terms/concepts across vertical domains.

Fed4IoT is actively contributing to both.

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 18 of 103

2.1.1 NGSI-LD Information Model and API

Fed4IoT has agreed, since the first period of the project, NGSI-LD to be the reference
data model of the project, both for modelling and querying data. We re-assess in this
section the main concepts of NGSI-LD information model and API.

NGSI-LD is represented in JSON-LD and, consequently, has a grounding in RDF. This
grounding allows it to capture high-level relationships between entities (i.e. IoT devices,
group of devices or non-IoT information) and properties of entities, as shown below. The
core concept in the NGSI-LD data model is the “Entity”, which can have properties and
relationships to other entities. An entity is equivalent to an Owl class. The assumption
is that the world consists of entities (please refer to ETSI CIM ISG WorkItem 006,
Information Model, available online at the group’s open area), that usually are physical
entities like a car or a building, but can be more abstract things, like a company or the
coverage area of a WLAN access point, too.

Entity instances are identified by a unique URI and a type, e.g. a sensor with identifier
urn:ngsi-ld:Sensor:01 and of type Sensor. Different from rdf:Properties, NGSI-LD
properties (and relationship) are also considered as Owl classes, too. Properties and rela-
tionships can be annotated by properties and relationships themselves, e.g. a timestamp,
the provenance of the information or the quality of the information can be provided.
The hasObject and hasValue in the NGSI-LD meta-model are defined to enable RDF
reification, based on the blank node pattern, so as to leverage the property graph model.

The NGSI-LD cross-domain ontology extends the NGSI-LD meta-model to cover sev-
eral general contexts presented below [2]:

• Mobility defines the stationary, movable or mobile characteristics of an entity;

• Location differentiates and provide concepts to model the coordination based, set
based or graph-based location;

• Temporal specification includes property and values for temporal property defini-
tions;

• Behavioural system includes properties and values to describe system state, mea-
surement and reliability;

• System composition and grouping provides a way to model system of systems in
which small systems are composed together to form a complex system following
specific patterns.

The NGSI-LD cross domain ontology is presented in Figure 2:
Based on this high-level ontology, the NGSI-LD API supports several operations. The

API is the standard for management of context information (which can be summarised has
being any piece of information associated to a context such as time-location information).
The Overall NGSI-LD API operations include:

• General Operations: which include creating, updating, retrieving, deleting entities
and subscribing to NGSI-LD entities,

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 19 of 103

Figure 2: RDF standards to capture high-level relations between entities in NGSI-LD.

• Registry Operations: which include Context Source Registration operations on cre-
ating, updating, deleting, retrieving and subscribing to NGSI-LD entities,

• Batch Operations: which include operations of creating, updating and deleting
NGSI-LD batch entities,

• Temporal Operations: which include operations of creating, updating (adding and
modifying attributes) of NGSI-LD temporal entity representation.

2.1.2 NGSI-LD architecture

NGSI-LD as specified in ETSI ISG CIM primarily defines an API and an information
model, not a single architecture. Nevertheless, it has been the intention to enable different
architectures based on NGSI-LD, in particular centralized, distributed and federated
architectures. In this section we introduce the general architectural assumptions behind
NGSI-LD and then show how these enable the implementation of different functionalities
and components in Fed4IoT.

Figure 3 introduces components in the sense of roles and their respective interac-
tions. Context Consumers request context information via the NGSI-LD API, either
synchronously using queries or asynchronously using subscriptions, which result in noti-
fications.

Context is originally provided by Context Producers and Context Sources. Whereas
Context Producers use the management methods of the NGSI-LD API to create, update
or delete context information in a Broker component, Context Sources store the informa-
tion themselves and offer the full interface for querying or subscribing to the information.
Context Sources register what kind of information they have with the Registry Server.

Context Consumers either request context information from Broker or directly from
Context Sources. To find the relevant Context Sources, Brokers or Context Consumers
discover the relevant Context Sources via the Registry Server based on the registrations.
Brokers then request the information from the identified Context Sources, aggregate it

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 20 of 103

Figure 3: Roles and interactions in NGSI-LD architecture.

and provide it to Context Consumers. Brokers in addition act as Context Sources for the
information in their local storage, which was provided by Context Producers.

2.2 Semantic Discovery Component

This section describes the Semantic Discovery component as depicted in the information
sharing architecture in Figure 1 and shows how it can be implemented using Scorpio’s
Registry Server based on the NGSI-LD API.

The role of the Semantic Discovery in the Information Sharing Architecture is to
enable the semantic discovery of vThings. This functionality is relevant for setting up
a vSilo, i.e. for finding the relevant vThings to subscribe to in order to populate the
vSilo with information. To enable the discovery, ThingVisors have to register the meta
information about their vThings, i.e. which entities, entity types, properties and relation-
ships are available, for which geographic area they can provide information, provenance
information like the source of the information, the quality of the information etc.

The Semantic Discovery in the Information Sharing Architecture can be implemented
using the Registry Server as defined in NGSI-LD, in this case the Registry Server imple-
mentation of the Scorpio NGSI-LD Broker. The Context Source Registration information
element can be used to describe a vThing as it can contain multiple entity descriptions,
i.e. entity id (optional), entity type and properties (optional), relationships (optional) as
well as geographic location specified in GeoJSON and optionally user-defined attributes
containing provenance information like the source of information or the quality of infor-
mation, thus fulfilling the requirements for the Semantic Discovery.

The Registry Server in NGSI-LD typically enables Consumers and Brokers to discover

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 21 of 103

relevant Context Sources providing the URL of the access point implementing the NGSI-
LD API.

For this purpose we can use the NGSI-LD Registry Server, which provides an HTTP-
based request/response interface as part of the standardized NGSI-LD API. Context
Sources register themselves with the information they can provide and the URL of their
access point. In general, different granularity of registrations is possible, e.g. entity id,
entity type and attributes or just entity types and attribute or even only entity type are
possible, resulting in different trade-offs regarding the load of registration updates and
the query load. ThingVisors provide information about one or more entities, i.e. they
would typically register with a number of entity id and entity type pairs. Instead of
registering the URL of their access point, they register the vThing to which consuming
Virtual Silos have to subscribe to in order to receive the entity information. This is
encoded by prefixing ”vThing:” to the name of the vThing as shown in the example
below.

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 22 of 103

Describe vThing implemented using NGSI-LD Context Source Regis-
trations.

{

"id":"urn:ngsi-ld:ContextSourceRegistration:santander:parkingspots",

"type":"ContextSourceRegistration",

"name":"Parking Spots and Weather Observed Santander Registration",

"description":"This registration registers the Parking Spots in

Santander, some of which are also equipped with temperature sensors

exposed via a WeatherObserved entity.",

"information": [

{

"entities": [

{

"id": "urn:ngsi-ld:ParkingSpot:santander:3921",

"type": "https://uri.fiware.org/ParkingSpot"

},

{

"id": "urn:ngsi-ld:ParkingSpot:santander:3922",

"type": "https://uri.fiware.org/ParkingSpot"

},

{

"type": "https://uri.fiware.org/WeatherObserved"

}]

}],

"endpoint":"vThing:urn:ngsi-ld:ParkingSpot:santander:parkingspots",

"location": {

"type":"Polygon",

"coordinates": [[

[-3.885801, 43.502139],

[-3.735709, 43.502139],

[-3.735709, 43.414834],

[-3.885801, 43.414834],

[-3.885801, 43.502139]

]]

}

"origin":"Santander Car Park Management",

"timestamp": {"start": "2017-06-12T13:53:15Z"},

"expires": "2030-06-12T13:53:15Z"

}

The above JSON registration gives an example, where two parking spots are explicitly
registered, providing both entity id and type, and in addition entities of type WeatherOb-
served are registered, which provide the Property temperature. Furthermore, the location
of the parking spots is specified using GeoJSON and the provenance information ”origin”

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 23 of 103

is given as ”Santander Car Park Management”.
For the discovery, the requester, i.e. the one setting up the vSilo, has to specify in

which entities it is interested and filter according to further aspects, e.g. location and
origin. Regarding entities, either specific entities can be selected by providing entity
id and type or all entities of a given type can be selected. On this set of entities, the
geographic filter and the filter on other attributes like origin is applied, resulting in the
reduced set of fitting vThings, which are returned and to which the vSilo then subscribes.

The discovery can be mapped to NGSI-LD, which provides the relevant functional-
ity. An example discovery request for discovering the property temperature as part of
WeatherObserved entities in Santander, specified as a geographic coordinate and a radius
of 3000m around it, is shown below.

Discovery of WeatherObserved entities with porperty temperature.

GET /ngsi-ld/v1/csourceRegistrations?type=WeatherObserved&

attrs=temperature& geoproperty=location&

georel=near;maxDistance==3000& geometry=Point&

coordinates=%5B-3.804109%2C43.464704%5D HTTP/1.1

Accept: application/json

Link: <https://pastebin.com/raw/rQ9mU4ue>;

rel="http://www.w3.org/ns/json-ld#context"; type="application/ld+json"

Host: <hostname>:2042

In case only vThings provided by Santander Car Park Management are to be con-
sidered, an additional filter csf=origin=="Santander Car Park Management" can be
added.

2.3 System vSilo

The System vSilo’s goal, as presented in Section 2, is to share a subset of the available
information with the external world. In Fed4IoT such a vSilo would be implemented
based on the Scorpio Broker implementation (by NEC). In the simplest case, there could
be one Scorpio Broker instance that would make information available to the external
world, via the NGSI-LD API using its HTTP binding. Such a Broker can be part of
an external Federation and for this purpose the available information in the Broker can
be registered with an external Registry server. The registration can either automatically
be done on the chosen granularity level, e.g. a detailed registration of every NGSI-LD
entity available or on an entity type level. Alternatively, a tailor-made registration can
be manually registered, e.g. exposing only a subset of the entity information actually
available in the Broker.

Figure 4 shows an example of a federation, where the System vSilo and an External
Broker are part of a federation. Both are registered with the Registry Server on the
federation level. On request from a Context Consumer, the Federation Broker will check
for potential sources in the Registry Server and forward the request to the System vSilo

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 24 of 103

Figure 4: External NGSI-LD Federation.

Broker, the External Broker or both, in case both may have relevant information. In the
latter case, the returned information will be aggregated before returning it to the Context
Consumer.

2.3.1 HTTP-based Information Sharing to External Platforms

The NGSI-LD API specification defines an exhaustive HTTP binding with a RESTful
API. This HTTP binding can be divided in six main categories:

• Context information provision

• Context information consumption

• Context information subscription

• Context source registration

• Context source discovery

• Context source registration subscription

In the context of the System vSilo, some categories are extensively used, as summarized
in Table 4.

• Context information provision: it is used by the System vSilo Controller to create
and keep up to date the information context relative to the virtual things the System
vSilo is managing.

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 25 of 103

• Context information consumption: it is used by the external platform to discover
entities belonging to VirIoT.

• Context information subscription: it is used mainly by external platform to sub-
scribe and be automatically notified, in a reactive way, of any event it is interested
in.

Category Actor Purpose
Context information pro-
vision

System vSilo
Controller

Create information and metadata about the
vThings into the NGSI-LD broker of the Sys-
tem vSilo

Context information pro-
vision

System vSilo
Controller

Enrich information context into the NGSI-
LD broker of the System vSilo with data pro-
duced during the vSilo usage

Context information con-
sumption

System vSilo
Controller

Search and discover information about enti-
ties known to the VirIoT platform by con-
tacting the Semantic Discovery component

Context information con-
sumption

External plat-
forms

Search and discover (authorized) informa-
tion about entities known to the VirIoT plat-
form

Context information sub-
scription

External plat-
forms

Notify about changes and events on specific
context information

Table 4: Summary of NGSI-LD HTTP API usages in the System vSilo

2.3.1.1 Context Information Provision

The primary objective of the context information provision HTTP API is to create the
information context and to keep it up to date. Specifically, it is used to provision entities
(e.g. vThings and their real counterparts) enriched with their metadata (e.g. location,
observation space, ...), and to keep such information up to date over time, whether it
is vThing direct information or metadata (e.g. ”update the position of this vThing”,
”update the current value of a temperature sensor”, ...) or vThing more global context
by managing its relations and properties (e.g. ”add a humidity temporal property to this
vThing” or ”add a relationship between these two vThings”).

To explain it in a more detailed way, some of the API usage are described below with
concrete examples.

First, here is an example call invoked when a vThing wishes to provision itself:

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 26 of 103

POST /ngsi-ld/v1/entities

{

"id": "urn:ngsi-ld:ParkingSpot:SantanderCenter:3",

"type": "ParkingSpot",

"status": {

"type": "Property",

"value": "free",

"observedAt": "2019-12-02T12:00:00Z"

},

"category": {

"type": "Property",

"value": [

"onstreet"

]

},

"refParkingSite": {

"type": "Relationship",

"object": "urn:ngsi-ld:ParkingSite:santander:SantanderCenter"

},

"name": {

"type": "Property",

"value": "A-13"

},

"location": {

"type": "GeoProperty",

"value": {

"type": "Point",

"coordinates": [

-3.80356167695194,

43.46296641666926

]

}

},

"@context": [

"https://ontology.fed4iot.org/context/fed4iot.jsonld",

"https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context.jsonld"

]

}

HEADERS:

Accept: application/json
Content-Type: application/ld+json

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 27 of 103

RESPONSE: HTTP/1.1 201 Created

(Empty response body)

HEADERS:

Location: /ngsi-
ld/v1/entities/urn:ngsi-
ld:ParkingSpot:SantanderCenter:3

Then, let’s see an example call invoked when a vThing wishes to update the value of
one of its properties:

PATCH /ngsi-ld/v1/entities/urn:ngsi-ld:ParkingSpot:SantanderCenter:3
/attrs/name

{

"name": "A-14"

}

HEADERS:

Link: <https://ontology.fed4iot.org/context/fed4iot.jsonld>;

rel=http://www.w3.org/ns/json-
ld#context;

type=application/ld+json
Accept: application/json

Content-Type: application/json

RESPONSE: HTTP/1.1 204 No Content

(Empty response body)

Similarly, when a vThing evolves and is enriched with a new property, it propagates
this event by calling the following API:

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 28 of 103

POST /ngsi-ld/v1/entities/urn:ngsi-ld:ParkingSpot:SantanderCenter:3
/attrs

{

"occupiedBy": {

"type": "Property",

"value": "Toyota Yaris"

}

}

HEADERS:

Link: <https://ontology.fed4iot.org/context/fed4iot.jsonld>;

rel=http://www.w3.org/ns/json-
ld#context;

type=application/ld+json
Accept: application/json

Content-Type: application/json

RESPONSE: HTTP/1.1 204 No Content

(Empty response body)

2.3.1.2 Context Information Consumption

The primary objective of the context information consumption is to let others (vSilos and
third parties in the VirIoT platform) perform searches and discover interesting entities.
For that, we use a range of the powerful NGSI-LD HTTP API search capabilities, from
simple basic ones (e.g. ”give me all the entities of type Parking Spot” or ”give me all the
entities that provide information about temperature”) to more complex ones including
time and space based filters (e.g. ”give me all the entities that are located in this given
area” or ”give me all the parking spots whose status is busy since more than 5 days”).

To explain it in a more detailed way, some of the API usage are described below with
concrete examples.

First, here is an example call invoked when someones wants to retrieve all known
information about a given entity:

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 29 of 103

GET /ngsi-ld/v1/entities/urn:ngsi-ld:ParkingSpot:SantanderCenter:3

(Empty request body)

HEADERS:

Link: <https://ontology.fed4iot.org/context/fed4iot.jsonld>;

rel=http://www.w3.org/ns/json-
ld#context;

type=application/ld+json
Accept: application/ld+json

Content-Type: application/json

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 30 of 103

RESPONSE: HTTP/1.1 200 OK

{

"id": "urn:ngsi-ld:ParkingSpot:SantanderCenter:3",

"type": "ParkingSpot",

"status": {

"type": "Property",

"value": "free",

"observedAt": "2019-12-02T12:00:00Z"

},

"category": {

"type": "Property",

"value": [

"onstreet"

]

},

"refParkingSite": {

"type": "Relationship",

"object": "urn:ngsi-ld:ParkingSite:santander:SantanderCenter"

},

"name": {

"type": "Property",

"value": "A-13"

},

"location": {

"type": "GeoProperty",

"value": {

"type": "Point",

"coordinates": [

-3.80356167695194,

43.46296641666926

]

}

},

"@context": [

"https://ontology.fed4iot.org/context/fed4iot.jsonld",

"https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context.jsonld"

]

}

Then, let’s say the same consumer now wants to get all information about parking
spots located in the SantanderCenter parking site:

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 31 of 103

GET /ngsi-ld/v1/entities?type=urn:ngsi-ld:ParkingSite
&q=refParkingSite==urn:ngsi-ld:ParkingSite:SantanderCenter

(Empty request body)

HEADERS:

Link: <https://ontology.fed4iot.org/context/fed4iot.jsonld>;

rel=http://www.w3.org/ns/json-
ld#context;

type=application/ld+json
Accept: application/json

Content-Type: application/json

RESPONSE: HTTP/1.1 200 OK

(A list of parking stops as shown in the previous example)

2.3.1.3 Context Information Subscription

The primary objective of the context information subscription is to allow internal and
external consumers to subscribe to changes in the information context. A change can
virtually be anything: an updated value for a property, a new entity, a new entity in a
specific area, etc.

Then, once a subscriber has registered its subscription, it is automatically notified as
soon as an event triggers the subscription.

This is of particular interest for third parties that can have a reactive notification and
thus do not need to be constantly polling the registry in case there is something new. It
is also used by vSilos to extend their knowledge and receive updated information beyond
their vThings for which they already receive notifications about via a specific MQTT
topic.

First, here is an example call invoked when someone wants to register a subscrip-
tion. Here it registers for notifications about changes in the ”status” property for the
urn:ngsi-ld:ParkingSpot:SantanderCenter:3 parking spot. When the ”status” prop-
erty changes, it will receive the new value for this property but also the value of the
”occupiedBy” one.

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 32 of 103

POST /ngsi-ld/v1/subscriptions

{

"type": "Subscription",

"entities": [{

"idPattern": "urn:ngsi-ld:ParkingSpot:SantanderCenter:3",

"type": "ParkingSpot"

}],

"watchedAttributes": ["status"],

"notification": {

"attributes": ["status", "occupiedBy"],

"format": "keyValues",

"endpoint": {

"uri": "http://my.endpoint.org/notify",

"accept": "application/json"

}

}

}

HEADERS:

Link: <https://ontology.fed4iot.org/context/fed4iot.jsonld>;

rel=http://www.w3.org/ns/json-
ld#context;

type=application/ld+json
Accept: application/ld+json

RESPONSE: HTTP/1.1 201 Created

(Empty response body)

HEADERS:

Location: /ngsi-
ld/v1/subscriptions/urn:ngsi-
ld:Subscription:0123

Of course, it also allows for more fine-grained subscriptions. In the following example,
it restricts notifications on the same ”status” property to cases where the parking spot
is not occupied by Tesla cars:

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 33 of 103

POST /ngsi-ld/v1/subscriptions

{

"type": "Subscription",

"entities": [{

"idPattern": "urn:ngsi-ld:ParkingSpot:SantanderCenter:3",

"type": "ParkingSpot"

}],

"watchedAttributes": ["status"],

"q":"https://ontology.fed4iot.org/context/fed4iot.jsonld#occupiedBy!=

Tesla",

"notification": {

"attributes": ["brandName", "occupiedBy"],

"format": "keyValues",

"endpoint": {

"uri": "http://my.endpoint.org/notify",

"accept": "application/json"

}

}

}

The subscription owner is then automatically notified each time an occurring event
matches its subscription (e.g. when the status of the parking stop with id urn:ngsi-ld:

ParkingSpot: SantanderCenter:3 changes).
This is materialized by an HTTP request on the endpoint registered at the time the

subscription was created (or updated):

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 34 of 103

POST “endpoint.uri”

{

"id": "urn:ngsi-ld:ParkingSpot:SantanderCenter:3",

"type": "ParkingSpot",

"status": {

"type": "Property",

"value": "busy",

"observedAt": "2019-12-10T12:00:00Z"

},

"refParkingSite": {

"type": "Relationship",

"object": "urn:ngsi-ld:ParkingSite:SantanderCenter"

},

"occupiedBy": {

"type": "Property",

"value": "Tesla model S"

}

}

2.3.2 Distributed System vSilo

For scalability reasons, a single Broker may not be sufficient for implementing the System
vSilo as the number of entities may be too large to handle. In this case, the System vSilo
can be distributed according to suitable criteria. This could be based on the type of
entity, the name of the vThing or the ThingVisor. The distribution strategy has to be
applied by the System vSilo Controller when setting up the System vSilo. An example
of a distributed setting based on the Scorpio NGSI-LD Broker.

Figure 5 shows an example of a distributed NGSI-LD-based System vSilo. The actual
information is distributed into different Brokers according to the distribution strategy.
These Brokers register themselves with the System vSilo Registry and all information can
be accessed through the System vSilo Broker that accesses and aggregates information
from the different Brokers based on the registration information in the System vSilo
Registry.

2.4 Pub/Sub-based Internal Information Sharing

This section describes the use of a MQTT publish/subscribe distribution system for the
internal information sharing of the VirIoT control commands and data items of Virtual
Things specified in D3.1. Figure 6 shows the used topics. We have control topics and data
topics. Control topics use c out, c in suffixes and data topics use data out, data in

suffixes.

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 35 of 103

Figure 5: Distributed NGSI-LD System vSilo.

Figure 7 shows which control/data topics are used to transfer control commands and
vThing data. Regarding the control topics, they start with a prefix that identifies the
entity type (TV, for ThingVisor, vSilo for vSilo, etc.) followed by the unique ID of the
related entity. Each entity (Master Controller, ThingVisor, vSilo controller, etc.) uses a
specific input and output control topic to receive and send control messages, respectively.

A entity X is the only subscriber of its input control topic, other entities that wish to
send information to the entity X publish on that input control topic. For instance, a vSilo
whose ID is e.g. tenant1/silo1 is subscriber of the topic vSilo/tenant1/silo1/c in.
When the Master Controller has to send it an addVThing control command, it publishes
this message to the vSilo/tenant1/silo1/c in topic.

A entity X is also the single publisher of its out topic. For instance, when a ThingVisor
whose ID is e.g. vWeatherTV, wants to inform the rest of the system entities that it is
going to be destroyed, it sends out a deleteVThing control messages for each vThing (e.g.
Rome/temp) it handles on the vThing out control topic. e.g. vThing/WeatherTV/Rome -

temperature. Each vSilo that is connected to this vThing is also a subscriber of this out
control topic and thus will receive this control message and will remove the vThing entry
from its internal broker.

Regarding the distribution of data produced by a vThing, the related ThingVisor
publishes NGSI-LD data on the vThing/<vThingID>/data out topic 2. In case a vThing
is associated to an actuator, it has to receive data coming from the vSilo controlling the
actuator vThing (e.g. the change of state from OFF to ON). To this end, the ThingVisor
is a subscriber of the topic vThing/<vThingID/data in where this information can be
pushed by vSilos.

2we remind that NGSI-LD is the neutral data format used to internally distribute information pro-
duced by a vThing

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 36 of 103

Figure 6: MQTT topics for internal information sharing

2.4.1 Performance of VirIoT’s MQTT dissemination system

Currently, the MQTT broker is a critical part of VirIoT architectures, especially because
any data generated by vThings cross it. In general, MQTT brokers can be deployed either
as standalone servers or in a cluster configuration to increase reliability, availability and
to increase the overall performances, as operations can be highly parallelized among the
cluster nodes.

We have found out that the linear increases of the number of cluster nodes don’t
necessarily provide an equivalent linear gain in performance, and the penalty may be
surprisingly significant. Accordingly, it is worth to understand the issue, provide simula-

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 37 of 103

Figure 7: MQTT binding for internal data sharing

tion support for the modelling of the underlying phenomena and to eventually propose
architectural approach to be followed in the final architecture release to cope with such
a unscaling issue. This topic is addressed in-depth in chapter 4.

2.5 ICN-based Information Sharing for ThingVisor Factory

Information Centric Networking (ICN) can be used as an alternative to exchange messages
among functions to compose ThingVisors, as explained in deliverable D3.1. Application of
ICN is currently confined within implementation of ThingVisors (Figure 8). However, we

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 38 of 103

ICN

TN
:

analytics
TN

: im
age

capture
trigger capture

TN: human detection
/ face detection

ICN router

CacheCache

Cache

trigger fa
ce detection

trigger reading

trigger retrieving

Root Data Domain

TN
: adapterO

-G
TN

: adapterF-G

TN: task name

TN
: cam

era
adapter

TN
 (vThing}:

face im
age

TN
 (vThing}

custom
ers

Master Controller
(Orchestration)

Pub/Sub
System

Virtual Silos
broker type

#1 (oneM2M)

vSilo
Controller

(Flavor#1)

vSilo #a

broker type
#1 (oneM2M)

vSilo
Controller

(Flavor#1)

vSilo #b

vSilo
Controller

(Flavor#2)

broker type
#2 (MQTT)

Figure 8: Application of ICN in Fed4IoT

are starting to design a concept of ThingVisor Factory, whereas the ICN will eventually
be extended to co-exist with the the pub/sub system shown in Figure 8. We believe
request/response communication model, as provided by ICN, is going to be a necessary
addition to the publish/subscribe communication model which is currently provided in
VirIoT.

In the current architecture as shown in Figure 8, chains of functions (tasks) create
vThings that interface with the pub/sub system of VirIoT. Each task can autonomously
initiate request/response communications to retrieve IoT device readings from the Root
Data Domain, and to prepare vThing values to be served by the task. By means of
the cache capability of ICN, the request/response communication might not, in some
cases, propagate all the way to the Root Data Domains or to the real IoT devices, saving
network resources and reducing latency.

The main idea is to “pass around” the NGSI-LD Entities that are part of vThing data
values over request/response protocol of ICN. On the other hand, control messages are
still transmitted by IP-based communication, since the tasks are implemented exploiting
container technology, currently Docker, and the control is performed through the interface
to Docker containers. Definitions of ICN messages that could be used for task control
are not yet mature at the time of writing this delivarable, so that we briefly discuss
preliminary ideas about information binding for exchanging NGSI-LD data payloads,
but not for control messages.

IoT data retrieved from the Root Data Domain is converted to the NGSI-LD infor-
mation model at the boundary of ICN, by the tasks connecting to the different data
domains. The initiation of the boundary tasks is triggered by the downstream tasks in
service function chains. The downstream tasks initiate autonomously using periodical

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 39 of 103

execution mechanism.
The request message (Interest packet) created by the initiating task has the format

shown in Figure 9. The Content Name field (topmost field) may contain the NGSI-LD
Entity Types that are requested for a certain vThing, thus identifying the elements that
are going to compose it, which are going to to be retrieved by this request. The Function

NGSI-LD Entity Type

Function Names

Selectors

Nonce

Guider

NGSI-LD Entity Type

Metainfo

Array of
NGSI-LD
Entities

Signature

Interest packet Data packet

Figure 9: ICN Message Format for ThingVisor Factory.

Names field specifies the service function chain to be applied to the NGSI-LD Entities,
matching the Entity Type, that embed the corresponding information derived from Root
Data Domains.

The NGSI-LD Entities derived by applying tasks to the data of the Root Data Domain
are placed in the Content field of response message (Data packet) as shown in Figure 9.
What is contained in the Content field is typically going to be an array of NGSI-LD
information.

Data packets may be cached at ICN routers as shown in Figure 8. If cached data
exist, the Interest packet requesting the cached data is not further propagated to the
original source. The Interest packet, instead, is matched by the cached data and the
router holding the cached data responds with the corresponding cached Data packet.
The lifetime of cached data need to be adjusted to the update interval of the original IoT
device data so that tardy data is not delivered to the requesting tasks.

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 40 of 103

3 Cross-Domain Information Sharing

3.1 Introduction

The purpose of this section is to present the way information is transferred from a source
of the Root Data Domain to one or several vSilos while minimizing information loss due
to crossing through the whole VirIoT platform. As presented earlier in the document,
the internal/neutral data model of the platform is NGSI-LD, which implies that any
information within a Root Data Domain has to be converted to the NGSI-LD model
by the corresponding ThingVisor. The reverse conversion, from the NGSI-LD model to
the Root Data Domain model has to be handled similarly to prepare for handling of
actuators, which will be discussed in the 2nd release of the deliverable.

As an illustrative example, we can consider temperature information. In its simplest
form, a temperature measurement would be expressed as a number (i.e. 22.8), which,
by itself, does not tell anything (is it a speed or a temperature? What is the unit that
was used?). A more advanced scheme would associate a name to that measurement (i.e.
temperature) and a unit (i.e. °C,) which would be understandable by a system using the
same representation. Even more advanced approaches use ontologies as a way to capture
and share a conceptualization of the information. In such approaches, information is
traditionally encoded within a scheme that is aimed at limiting the information loss
when sharing information.

3.2 SenML ⇔ NGSI-LD

3.2.1 SenML overview

Sensor Markup Language (SenML) is a low-energy-consuming language to retrieve mea-
surements from M2M devices and a non-proprietary format. SenML provides simple
measurements: the name, the units, and the value. SenML format allows information
aggregation over a time interval providing eventually a GPS location. The accepted data
formats are specified in SenML specification [3]. These are summarized below.

Simple form SenML representation. The simplest form encoding measure-
ment of 23.1 °C provided by sensor with id urn:dev:ow:10e2073a01080063

[{"n":"urn:dev:ow:10e2073a01080063","u":"Cel","v":23.1}]

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 41 of 103

Multi-values form SenML representation. The form encoding differents
measurement (voltage of 120.1 V and current of 1.2 A provided by sensor with id
urn:dev:ow:10e2073a01080063

[{"bn":"urn:dev:ow:10e2073a01080063:","n":"voltage","u":"V","v":120.1},

{"n":"current","u":"A","v":1.2}]

Periodic measurements SenML representation. The form encoding peri-
odic measurement (5 current measurement taken at 1s interval before timestamp
1.276020076001e+09 provided by sensor with id urn:dev:ow:10e2073a0108006

[{"bn":"urn:dev:ow:10e2073a0108006","bt":1.276020076001e+09, "bu":"A","

bver":5, "n":"voltage","u":"V","v":120.1}, {"n":"current","t":-5,"v

":1.2}, {"n":"current","t":-4,"v":1.3}, {"n":"current","t":-3,"v

":1.4}, {"n":"current","t":-2,"v":1.5}, {"n":"current","t":-1,"v

":1.6}, {"n":"current","v":1.7}]

3.2.2 NGSI-LD encoding

A NGSI-LD encoding of a SenML packet normalised to its simplest form would look like:

NGSI-LD sensor measurement. Extract of NGSI-LD representation of a sim-
ple sensor measurement

{

"id":"urn:ngsi-ld:senML_Sensor:00YFZF",

"type":"Temperature",

"observedAt":"2010-06-08T18:01:16.001",

"value":23.1,

"unitCode":"CEL",

}

In the case of NGSI-LD, the measurement characteristics (timestamp, unit, value, etc.)
are provided as Properties. A first issue we met is the identification of the measurement
type. While a SenML measure expressed in °C is undoubtedly of type temperature, other
units may not have such a simple mapping. As an example, a concentration expressed
in mg/l does not say anything about the observed physical or chemical specie. In that
case, the system has to be informed about the type of measurement provided by the
sensor when it is registered into the platform. This mapping operation is realised at the
ThingVisor level which also maps the senML sensor basename to the NGSI-LD sensor ID.
The last mapping to be achieved is the unit code. The senML specification [3] provides
a limited list of unit codes which needs to be mapped to the UN/EDIFACT common

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 42 of 103

codes [4] as recommended within the NGSI-LD specification. Table 5 provides examples
of simple mapping between these two encoding schemes.

Unit name senML Symbol NGSI-LD recommendation
meter m MTR

kilogram kg KGM
gram g GRM

second s SEC
ampere A AMP
kelvin K KEL
radian rad C81

Table 5: Sample of senML to NGSI-LD unit code mapping

3.3 NGSIv2 ⇔ NGSI-LD

This section presents the mapping strategy between NGSI-LD and NGSIv2. The FI-
WARE data models had been studied to define the data model and the mapping process.

In NGSIv2, the entities only contain attributes. These attributes are understood as
properties. They can be of different types (alphanumeric, date and time, etc.). Optionally
each one may contain metadata.

In NGSI-LD entities contain properties and also relationships, optionally each one
may include metadata. In NGSI-LD there aren’t different types of properties. NGSI-LD
offers a powerful means to encode the relationships between entities.

As NGSIv2 lacks structuring able differentiate between properties and relationships,
FIWARE introduced the convention that the name of the attributes that represent a
relationship should start with ”ref”. Also, if the type of the attribute is ”Relationship”
or ”Reference”, it will be considered as a relationship too.

Finally, as a result of the mapping process, from each NGSI-LD entity, a single entity
will be obtained in NGSIv2 and vice versa.

Next, we can see an example of a parking site entity in NGSIv2 and its corresponding
representation in NGSI-LD. The @context is omitted for brevity.

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 43 of 103

NGSI-v2 Parking site entity.

{ id: 'urn:ngsi-ld:parkingsite:Aparcamiento:101',
type: 'parkingsite',
timestamp: { value: '2019-04-29T12:30:00Z', type: 'DateTime', metadata:

{} },

name: { type: 'Text', value: 'Libertad', metadata: {} },

numSpacePC: { type: 'Text', value: '51', metadata: {} },

totSpacePCCapacity: { type: 'Text', value: '330', metadata: {} },

maxHeight: { type: 'Number', value: 1.8, metadata: {} },

maxLength: { type: 'Number', value: 5.1, metadata: {} },

maxWidth: { type: 'Number', value: 2.3, metadata: {} },

payMthd:

{ type: 'StructuredValue',
value: ['Cash', 'PayPal'],

metadata: {} },

payMthdCreditCard:

{ type: 'StructuredValue',
value: ['AmericanExpress', 'Discover', 'MasterCard', 'VISA'],

metadata: {} },

policyPC:

{ type: 'Relationship',
value: 'urn:ngsi-ld:policy:Aparcamiento:101:PrivateCar',
metadata: { entityType: { value: 'policy', type: 'Text' } } },

isOpen: { type: 'boolean', value: true, metadata: {} },

location:

{ type: 'geo:json',
value: { type: 'Point', coordinates: ['-1.1336517', '37.9894006']

},

metadata: {} } }

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 44 of 103

NGSI-LD Parking site entity.

{

"id": "urn:ngsi-ld:parkingsite:Aparcamiento:101",

"type": "parkingsite",

"observedAt": {

"type": "Property",

"value": {"@type": "DateTime", "@value": "2019-04-29T12:30:00Z" }

},

"name": {

"type": "Property",

"value": "Libertad"

},

"numSpacePC": { "type": "Property", "value": "51" },

"totSpacePCCapacity": { "type": "Property", "value": "330" },

"maxHeight": { "type": "Property", "value": 1.80 },

"maxLength": { "type": "Property", "value": 5.10 },

"maxWidth": { "type": "Property", "value": 2.30 },

"payMthd": {

"type": "Property",

"value": ["Cash","PayPal"]

},

"payMthdCreditCard": {

"type": "Property",

"value": ["AmericanExpress","Discover","MasterCard","VISA"]

},

"policyPC": {

"type": "RelationShip",

"object": "urn:ngsi-ld:policy:Aparcamiento:101:PrivateCar"

},

"isOpen": { "type": "Property", "value": true },

"location": {

"type": "GeoProperty",

"value": { "type": "Point", "coordinates": ["-1.1336517",

"37.9894006"] }

}

}

3.4 oneM2M ⇔ NGSI-LD

The oneM2M[5] platform is a global standard initiative for Machine to Machine (M2M)
Communications and the IoT, providing a common M2M Service Layer with common
service functions to connect and interwork devices. The oneM2M architecture is composed
of the following four functional entities: the application dedicated node (ADN); the

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 45 of 103

application service node (ASN); the middle node (MN); and the infrastructure node (IN).
Each node contains a common services entity (CSE), an application entity (AE), or both.
An AE provides application logic, such as remote power monitoring, for end-to-end M2M
solutions. A CSE comprises a set of service functions called common services functions
(CSFs) that can be used by applications and other CSEs. CSFs includes registration,
security, application, service, data and device management, etc.

The NGSI-LD information model and API was presented in section 2.1.1.

Within this section, a Smart Camera use-case located in the city of Grasse will be
presented and studied in both NGSI-LD and oneM2M formats, in order to briefly present
the strategy for mapping from NGSI-LD to oneM2M (already introduced in previous
deliverable D2.2) and then to study it in more detail for the reverse mapping, i.e. from
oneM2M to NGSI-LD.

The context of this Grasse example use-case consists of a sensitive site monitored by
a smart camera, which may be able to detect events of wild deposits and provides the
location, the car plate number and the type of waste illegally deposited.

3.4.1 Mapping from NGSI-LD to oneM2M

The NGSI-LD data model is our starting point for mapping NGSI-LD to oneM2M. Figure
10 models this example in NGSI-LD.

Figure 10: Grasse Use Case Example modeled in NGSI-LD

Below, the NGSI-LD entities of Site and Smart Camera. The @context is omitted for
brevity.

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 46 of 103

NGSI-LD Site Entity.

{

"id":"urn:ngsi-ld:Site:01",

"type":"Site",

"location":{

"type":"GeoProperty",

"value":{

"type":"Point",

"coordinates":[-8.5,4.2]

}

},

"name":{

"type":"Property",

"value":"Sophia"

},

"illegalDeposit":{

"type":"Property",

"location":{

"type":"GeoProperty",

"value":{

"type":"Point",

"coordinates":[-8.5,3.9]

}

},

"registrationPlate":{

"type":"Property",

"value":"bp169"

},

"wasteType":{

"type":"Property",

"value":"ORD"

},

"detectedBy":{

"type":"Relationship",

"object":"urn:ngsi-ld:SmartCamera:X01"

}

}

}

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 47 of 103

NGSI-LD Smart Camera Entity.

{

"id":"urn:ngsi-ld:SmartCamera:X01",

"type":"SmartCamera",

"location":{

"type":"GeoProperty",

"value":{

"type":"Point",

"coordinates":[-7.5,2.2]

}

}

}

According to the previous work done in the deliverable D2.2, our adopted strategy
for mapping NGSI-LD to oneM2M is summarized as follows: every NGSI-LD entity
is mapped to a different Container within the same oneM2M Application Entity. For
this purpose, NGSI-LD property values or Relationship object are mapped directly to
oneM2M resources of type ContentInstance. The type (i.e Property and Relationship)
is added as labels in the semantic descriptor for the container. Each NGSI-LD entity is
mapped to a top-level container.

3.4.2 Mapping from oneM2M to NGSI-LD

The starting point for mapping oneM2M to NGSI-LD is the oneM2M resource tree, which
is detailed in Figure 11.

The Semantic Descriptor, part of the oneM2M standard specification, enables attach-
ing semantic description via RDF triples to the resource. These added triples are exploited
as much as possible for mapping oneM2M to NGSI-LD. For this purpose, this section will
focus on the impact of the semantic description on the mapping of oneM2M to NGSI-LD
according to 3 main levels: (1) Mapping oneM2M to NGSI-LD without semantic descrip-
tion, (2) Mapping oneM2M to NGSI-LD allowing to freely choose the reference ontology,
and (3) Mapping oneM2M to NGSI-LD with a specific reference ontology (NGSI-LD and
SAREF).

Details about each of the possible alternatives are given in the following.

• Mapping oneM2M to NGSI-LD without the semantic description: In this case we
consider a oneM2M resource tree with an empty (or not implemented) semantic
descriptor. The @context is a crucial field in the NGSI-LD messages. In fact, the
URIs of each property/relationship name have to be referenced in the @context
file(s). To have a mapping of the oneM2M resource tree without at least having
URIs of the CSEs, AEs, Containers and Sub-containers is not realistic in this case.

• Mapping oneM2M to NGSI-LD with free choice of the reference ontology: In this

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 48 of 103

Site

site01

(-8.5,4.2)

Grasse

name

sophia

location

illegalDeposit

((-8,5,3,9),
bp169,ord,SmartCamera

X01)

CSE

AE

Container

ContainerInstance

SemanticDescriptor Value is-a illegalDeposit
Value1 is-a registrationPlate
Value2 is-a wasteType
Value3 is-a ngsi-ld:Relationship

Value is-a Location
Value hasUnit wsg84
Value hasDataType string

smartCameraX01

(-7.5,2.2)

Value is-a saref:device

Figure 11: oneM2M resource tree of the Grasse Use Case Example

case we suppose that all CSEs, AEs, Containers and Sub-containers have an URI
pointing to their semantic description. These URIs are directly added within the
@context file, as a preliminary necessary step towards achieving a well-formed map-
ping. In Table 6 we summarize the further steps of our mapping strategy from
oneM2M to NGSI-LD.

Table 6: First steps towards mapping oneM2M to NGSI-LD

oneM2M NGSI-LD

top-level container Entity
AE Entity type
top-level container resource ID Entity Id = ”urn:ngsi-

ld:”+AE+”:”+resource ID
sub-container resourceName Property name
content instance of the sub-container Property value

Applying this strategy in our use case example, three main problems appear:

(1) Properties (location, registrationPlate, wasteType) of the Property ”illegalDe-
posit” are all mapped to a unique value as follow:

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 49 of 103

"illegalDeposit":{

"type":"Property",

"value":"((-8,5,3,9), bp169,ord,SmartCameraX01)"

}

Properties of Property and Relationships of Property are not supported using this
strategy.

(2) Relationships following this mapping strategy are not detectable, all sub-containers
of the resource tree are seen as NGSI-LD properties and content instance of the sub-
container as property values.

(3) The sub-container ”smartCameraX01” has to be mapped to a new NGSI-LD
entity not to a property.

• Mapping oneM2M to NGSI-LD with a specific reference ontology (NGSI-LD and
SAREF): In order to produce a correct mapping strategy we have to refer to some
known ontologies and critically to SAREF and NGSI-LD ontologies. Referring these
ontologies in the semantic descriptor and adding new generic rules will allow us to
a successful oneM2M to NGSI-LD mapping strategy.

In the following, we try to resolve the previously detected issues by adapting the
semantic description and referring NGSI-LD and SAREF ontologies.

Rules for detecting Properties of Property

If a sub-container is described as an RDF class or NGSI-LD Enity

that have properties as domain, we can directly assume that this

sub-container will be mapped as an NGSI-LD property, its

semantic properties as NGSI-LD properties of the property and

values of the container Instances as values of the properties.

The same strategy may be applied for detecting NGSI-LD Relationships of Property,
especially when we apply the following rules for detecting NGSI-LD Relationships.

Rules for detecting Relationships

Each desired Relationship in the oneM2M resource tree has to be

defined and specified as a NGSI-LD Relationship in the semantic

descriptor by referencing the URI of the NGSI-LD relationship "

https://uri.etsi.org/ngsi-ld/Relationship".

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 50 of 103

The Relationship concept is defined and introduced by the NGSI-LD standard, and
detecting it in the oneM2M resource tree or even in the semantic description is
hard task if the NGSI-LD URI is not referenced. When an NGSI-LD Relationship
is detected its value will be added to the ”object” field and a new Entity will be
created. Properties of this newly created Entity are not known and have to be
brought in. That’s why a sub-container with the properties of the Smart camera
was added.

Rules for detecting new Entities

Each saref:device is mapped to a new NGSI-LD Entity where its type

is the label of the sub-container, the Id is the resource Id of

the sub-container. Content instances of the sub-container are

mapped as properties of the new Entity.

The SAREF ontology was mentioned in the previous section as a solution for de-
tecting new entities in the oneM2M resource tree and thus mapping all SAREF
properties of the semantic description to NGSI-LD properties. As mentioned be-
fore, Relationships have to be declared, in order for them to be detectable and thus
mapped to NGSI-LD Relationship correctly.

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 51 of 103

4 Analysis of MQTT Clusters

An MQTT cluster is a distributed system that behaves, from the user point of view, as a
single logical broker while multiple MQTT nodes handle the workload under the curtains.
We plan to use a MQTT cluster for VirIoT internal information sharing (Figure 1) because
the advantages are multiples, from the increase of reliability and availability of the services
to the achievement of better performances. The effectiveness of the clustering technique
can be observed to handle failover scenarios: if one of the brokers is not available, the
remaining working nodes are still able to work properly avoiding a system-wide outage.
This is achieved when the brokers work together and the system can route correctly
the incoming traffic to the running brokers. It is now understood that the broker plays
an essential role in MQTT communications. So critical in certain scenarios, that if not
clusterized can lead the whole system to break down. Commonly, nodes run in distinct
physical servers or are hosted in virtual machines, preferably connected over a dedicated
network to isolate the traffic between them and the outside world.

Figure 12: Cluster example

In general, an MQTT broker is a stateful application, meaning the nodes store in-
formation about the MQTT sessions necessary for the protocol to work properly, like
connected clients, updated topic tables and also information about the cluster itself. A
specific case is when a node stops functioning, the cluster must work it around and deal
with a netsplit, which is the result of a failure of one or more network devices causing
nodes no more reachable. Thus, the cluster must be aware of it and adjust to the situ-
ation accordingly. It will know that there is a node missing and it will keep looking for
it, until the node comes back online and heals the partition or the other way around, it
is forced to leave otherwise an eternal netsplit will arise.

The nodes become aware of the elements of the cluster through a discovery phase and
identify each other using a unique name, which is used to join in the cluster and leave it
later on. When a new subscription is directed to an MQTT broker, it is the job of the
latter to inform all the other nodes it has the client subscription to the specified topics.

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 52 of 103

Whereas an MQTT client publishes a message, the node will search a match onto the
topic table and forwards the message to all the nodes owning these clients.

So all the nodes must have a synchronised version of the topic table, needed to perform
a lookup match every time a new message comes in. Indeed, this operation will perform
traffic across the cluster. The lack of this functionality precludes the implementation to
work in a cluster fashion way. The broker also holds the sessions of all persisted clients,
including subscriptions and missed messages.

One popular open-source implementations of MQTT broker is Eclipse Mosquitto [6].
It is written in C and thanks to its small code footprint is ideal for the use on almost any
device from low-power embedded devices to full servers, but it has some drawbacks. It
does not support clustering and can’t take advantage of multi-core CPUs as it leverages
only one single thread. For these reasons, we didn’t consider it for our studies, since the
clustering ability was essential.

An interesting high-performance, distributed MQTT implementation, is VerneMQ [7],
based on Erlang OTP, a language very popular in the message broker world because of
its distributed capabilities for building highly scalable messaging systems. This enables
VerneMQ to scale both horizontally and vertically. It fully supports clustering capabili-
ties, supporting a high number of concurrent publishers and subscribers while maintaining
low and predictable latency. Its fault tolerance capabilities must be noted, specifically
VerneMQ can tolerate incredibly well network failures and provide detailed control over
availability and consistency of the brokers. Moreover, the underlying distributed data
storage features automatic conflict resolution and recovers automatically from netsplits.

Another widespread message broker is RabbitMQ [8], it is written in Erlang and has
support for clustering. The problem with RabbitMQ is the MQTT support itself. Al-
though it supports natively other publish/subscribe protocols, like AMQP (Advanced
Message Queuing Protocol), the MQTT implementation is missing some important fea-
tures such as QoS2, which can be crucial in some cases.

Lastly, HiveMQ [9], built in Java with scalability and enterprise-ready security in
mind, offers similar characteristics of VerneMQ. Unfortunately, it was not considered for
our tests because not open-source and a license is necessary to make it properly work.

4.1 The scaling issue we found

Some experiments carried out with different open-source MQTT cluster implementations,
namely VerneMQ [7] and eMQTT [10], showed similar non-perfect scaling problems that
intrigued us to investigate the matter. This result has further strengthened our confidence
in believing the issue is not related to the implementation, rather associated with the more
generic and widely used clustering scheme presented in Section 4.1.1.

Let us describe our experiment. We have considered different MQTT cluster configu-
rations, ranging from a cluster with one broker, up to a cluster with 4 brokers. We have
deployed the cluster across the nodes using Kubernetes [11].

The pub/sub scenario comprised 1000 topics, each one with a single publisher and
a single subscriber. Publishers are equal to each other, generate messages with a pay-

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 53 of 103

N.of brokers VerneMQ (msg/s) eMQTT (msg/s)

1 4000 2000
2 5035 2600
3 7035 3600
4 9030 4400

Table 7: Publishing rate providing 2 ms of latency versus the number of brokers of the
cluster

load of 200 bytes, with MQTT QoS equal to 0, and with a message inter-time which
follows a Poisson distribution. The brokers and the load balancer run on different vir-
tual machines with 2 CPUs each, hosted by Microsoft Azure cloud. The publishers and
the subscribers’ applications run on another virtual machine with 16 CPUs, so that the
message throughput bottleneck are, inevitably, the brokers.

We measured the scale-out benefit concerning the maximum publishing rate the sys-
tem can sustain while keeping the average message delay lower than 2 ms. Related
measurements are reported in Table 7.

To understand the obtained results, we defined the expected publishing rate as the
measured publishing rate in case of a single broker, multiplied by the number of brokers
in the cluster. For instance, Table 7 shows that the publishing rate providing 2 ms of
delay with a single VerneMQ broker is 4000 messages per second, then the expected rate
in case of two VerneMQ brokers is 8000 messages per second, and so forth. Naively,
performance is expected to scale up linearly with the available brokers.

Surprisingly, measurements unveil that the actual performance is rather far from
the expected behaviour. For example, with VerneMQ, in case of 4 brokers, we got a
publishing rate of 9030 messages per second versus an expected one of 16000. Fig. 13
shows the ratio between the measured and the expected publishing rates. When the
cluster size increases, the measured performance dramatically falls to approximately half
of the expected outcome. In this configuration, the MQTT cluster is wasting half of the
computing resources.

The motivations of this result will be examined in more detail in the following section.

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 54 of 103

Figure 13: Measured/Expected message rate ratio for 2 ms latency, in case of 1000 topics,
1000 publishers and 1000 subscribers

4.1.1 Sub-linear performance scaling

To understand the motivations of the sub-linear scaling behavior of the cluster, we have
firstly found out which are the configuration parameters having an impact on the latency
introduced by a single broker. Thereafter, we have analyzed how these parameters behave
in a cluster configuration.

In our testbed everything (broker, clients, etc.) runs in the same data-centre thus the
network delays are negligible and the message latency is mainly due to the processing
work carried out by the broker during the forwarding of the messages from the publishers
to the subscribers. Such processing can be roughly split into two procedures: matching
and dispatching.

The matching procedure is used to single out which are the subscribers interested to an
incoming message, usually exploiting fast matching algorithms (e.g. subscription tries).
Subsequently, the dispatching procedure is used to send the message to these subscribers,
while handling related QoS. The execution of these procedures load the CPU as follows:

• the processing load due to the execution of the matching procedure depends on
the number of messages (publication) per second received by the broker, hereafter
named input traffic;

• the load due to the dispatching procedure is instead related to the number of message
per second sent out by the broker, hereafter named output traffic.

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 55 of 103

We measured the impact on the latency of these two traffics by separating their
effects. Figure 14 shows the latency versus the input traffic while the output traffic is
kept constant at 2000 msg/s 3.

Figure 14: Message latency versus input traffic in case of VerneMQ single broker

Vice versa, Figure 15 shows the latency versus the output traffic while the input traffic
is kept constant at 2000 msg/s 4. As we can see the increase of the input and/or of the
output traffic leads to an increase in the latency introduced by the broker.

3To reproduce this configuration we varied the number of topics from 100 to 2000. Each topic is used
by a different publisher, sending a message with an average rate of 4 msg/s. The number of subscribers
is 2000 and each of them is interested in a single topic which is chosen using a round-robin strategy

4To reproduce this configuration we used 500 topics. Each topic is used by a different publisher,
sending a message with an average rate of 4 msg/s. The number of subscribers is varied from 500 to
4500 and each of them is interested in a single topic which is chosen using a round-robin strategy

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 56 of 103

Figure 15: Message latency versus output traffic in case of VerneMQ single broker

In case of a single broker, the input traffic is simply composed by the stream of
messages coming from the publishers connected to the broker, while the output traffic is
formed by the stream of messages sent to the subscribers connected to the broker. In a
cluster configuration though, in addition to these input/output external streams, we have
an internal, node-to-node, input and output traffic that we argued to be the motivation
of the not-perfect scaling issue since it increases the rate of matching and dispatching
procedures thus the CPU load.

As shown in Figure 16, a generic broker k manages a subset of publishers and sub-
scribers, and deals with four types of traffic:

• External input traffic (Aeik) is the stream of messages generated by the connected
publishers.

• External output traffic (Aeok) is the stream of messages sent to the connected
subscribers

• Internal output traffic (Aiok) is the part of the messages of the external input traffic
forwarded to other brokers of the cluster since they have interested subscribers.

• Internal input traffic (Aiik) is the stream of messages received from other brokers
of the cluster because the broker k has interested subscribers.

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 57 of 103

Figure 16: Internal and external traffic of an MQTT cluster

As shown by Figure 13, the increase of the number of brokers of the cluster leads to
a proportional decrease of input/output external traffic, and thus of the CPU load, since
the publisher/subscribers connections are uniformly distributed over a greater number of
brokers.

On the other hand, Figure 14 shows that when the internal traffic shows up, the
aforementioned CPU reduction partially vanishes.

4.2 Performance analysis

The goal of this chapter is to evaluate the impact of system and traffic parameters on the
internal traffic obtaining important insights for the cluster design. We considered two
MQTT use-cases namely Social Network and IoT.

The social network use-case is inspired by pub/sub social network applications like
Twitter where a subscriber subscribes to different topics [12]. Accordingly, we assume that
every subscriber is interested in several topics equal to Nsxs (number of subscriptions per
subscribers) and that the topic popularity follows a Zipf distribution with shape factor
α.

The IoT use-case is inspired by a typical IoT environment in which topic names follows
a hierarchy that is somehow related to the physical environment, e.g. buildingId/floorId/-
roomeId/sensorType/sensorId. Subscribers can be interested in the publications related
to a specific topic or in the publications related to a cluster of topics sharing the same
name-prefix, e.g. buildingId/floorId/roomeId.

We simply modelled this behaviour by setting up a tree of possible subscriptions (see
Fig. 17) whose depth is d, every node has the same fan-out equal to f . The subscription
selecting process provides that a subscriber first chooses a tree level according to a given

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 58 of 103

level probability vector Pl = Pl0..P ld, where Pli is the probability of selecting the ith
level. Then, the subscriber randomly chooses one out of the nodes of the level.

Figure 17: Subscription tree in an IoT scenario

We have developed a simulation tool using the MATLAB [13] environment to replicate
the exact behaviour of the considered MQTT cluster. We assumed a publisher per topic
which publish messages with a Poisson interarrival. Through the simulation analysis, we
were able to study the behaviour of the traffic flows. In particular, we are focusing our
attention on both the input and the output overhead of the traffic resulting from different
cluster simulation scenarios, concerning the response a single node cluster would have.

We defined input and output overheads as follows:

overheadout =
Aeo + Aio

Aeo

= 1 +
Aio

Aeo

(1)

overheadint =
Aei + Aii

Aei

= 1 +
Aii

Aei

(2)

where Aei is the total external input traffic (the amount of publications per second
received), Aei is the external output traffic (the amount of publications per second sent
to subscribers), and Aii = Aio is the total internal input (and output) traffic exchanged
inside the cluster to transfer publications from the receiving node to the other nodes of
the cluster having interested subscribers.

The input overhead is a measure of the additional amount of lookup per second every
node of the cluster needs to do with respect to the case of a linear scaling. For instance if
the input overhead is equal to 9 and we have 14 nodes, this means that in a perfect linear
scaling the amount of lookup operations should be equal to Aei/16, but due to inefficiency
of the cluster each node actually carries out 9(Aei/16) lookup (topic routing) operations
per second, thus vanishing a lot the /16 load reduction expected by the horizontal scaling

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 59 of 103

of the cluster from 1 to 16 nodes. A same reasoning can be repeated for the output
overhead with respect to the number of forwarding per second.

First of all, we wanted to simulate a typical use-case for the pub/sub pattern, that is
why we are going to consider a scenario such as the one of a social network environment
like Twitter where a subscriber subscribes to different topics [12], Spotify [14] or RSS
feed [15].

To model our analysis we have chosen to consider some common parameters appro-
priate for the scenarios, constraining the model with the following degrees of freedom:

• α, the Zipf parameter;

• Nsxs, the number of topic subscriptions per subscriber;

• Nsub, the number of total subscribers;

• Ntop, the set of topics available that correspond to the number of publishers;

• M , the number of cluster nodes available.

Through the following graphs, we are going to study the variation of some parameters,
keeping the other fixed. The results were particularly valuable for our studies and the
interpretation of them allowed us to have a better view of the big picture.

It has been shown [16] that it is reasonable to assume that the popularity of the
topics subscribed by a subscriber follows a Zipf distribution similar to Web objects [17].
It follows that we have considered a value of 1.13 for the Zipf parameter α, to describe
given distribution [16]. Other studies assumed a mismatched amount of publishers and
subscribers, like [18] that to evaluate scalability, assumed one publisher changing the
number of subscribers, while others authors, like [19], assumed the opposite consideration.
We have chosen a configuration more suited for the social network scenario assumed
before, with several publishers at least equal to the number of subscribers.

The behaviour of the previously mentioned Equations 1 and 2 define our model of
study, that is why was helpful for us to plot both of the overheads, as well as the traffic
parameters that compose it. One of the curves, the violet one, represents an algorithm
that will be discussed in the last section, the greedy one. Furthermore, it can be seen from
every figure that the model overhead, accurately represents the simulation undertaken,
as it lines up almost perfectly with the simulated curves.

4.2.1 Study of the Cluster’s Nodes Variation

First off, we wanted to see how the system would respond to a scale-out of the cluster’s
nodes in a steady scenario, where the number of clients does not change. In particular,
we have tried the setting where the only parameter to change was the number of nodes
to check if scaling would have a beneficial role in our considerations. It can be noted
in Figure 19, that the two straight lines are the evidence of the initial constraints we
have put: a constant input and a constant output of the entire cluster, not only on the

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 60 of 103

number of subscribers but even the number of the topics they are subscribed to, thus
the publishers5. As might be expected, an increase of the cluster’s size corresponds to
an inevitable increase of the internal input overhead, defined by Equation 1. Its slope is
ruled by the ratio between the green and the orange line (Figure 19) and corresponds to
the orange input overhead in Figure 18. When the number of nodes becomes higher, the
probability that a client publishes on a broker with the same topic’s subscription becomes
lower, thus the need of an additionally hop to send the message to the proper receiver,
that increases the internal traffic.

Figure 18: Overhead vs Number of nodes in the cluster

5α = 1.13, Nsxs = 10, Nsub = Ntop = 5000

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 61 of 103

Figure 19: Cluster’s traffic vs Number of nodes in the cluster

4.2.2 Study of the Cluster’s Subscribers Variation

An example of this scenario could be the happening of an event, for instance, a national
football match, where the interest of the match is higher than usual with a consequently
higher number of subscribers of the topic, which is the match itself. To simulate this
scenario as a sports matching application, we have considered the growing number of
subscribers 6 while all the other properties of the cluster remain fixed, including the
number of nodes. Clearly, this setting will affect the output traffic, as the amount of
messages towards the external side grows linearly with the clients. As mentioned at the
beginning of this section, the default value for the number of the subscriptions a subscriber
is allowed to be interested in (Nsxs) is set as a default value of 10. This explains why the
external output is higher, of an order of magnitude, concerning the other traffics plotted
in Figure 21. This considerable difference will dramatically bring the output overhead to
the unit, as it is the denominator in the Formula 2 it will cancel out the contribution of
the internal traffic.

Similar behaviour can be obtained if we consider the variation of the previously men-
tioned Nsxs

7. In other words, as the Figures 20 and 21 strongly pinpoint, the number
of topics that draw the attention of the subscribers increases the number of flows ad-
dressed in the direction of the external subscribers, thus the dispatched traffic towards
the outside, increases.

6α = 1.13, Nsxs = 10,M = 4, Ntop = 5000
7α = 1.13,M = 4, Nsub = Ntop = 5000

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 62 of 103

Figure 20: Overhead vs Number of subscribers

Figure 21: Cluster’s traffic vs Number of nodes in the cluster

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 63 of 103

Figure 22: Overhead vs Number of subscriptions per subscriber

Figure 23: Cluster’s traffic vs Number of subscriptions per subscriber

4.2.3 Study of the Cluster’s Publishers Variation

One of the most significant interpretations of the results came from the scenario where the
number of publishers grows. We have already covered the considerable impact the input
traffic has on the latency when we presented our initial real measurements. Notably, we
have discussed the type of processing that has an intense load on the CPU, stating the

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 64 of 103

heavy role of the matching procedure. With the help of the measurements we have seen
the impact on the latency given by the input traffic, that is way heavier than the load
given by the dispatching procedure.

Since the only traffic towards the external of the cluster remains constant, as the
number of subscribers and their subscriptions, it is illustrated in Figure 25 as a straight
line. On the other hand, the input traffic grows with the evolving of the simulation, as
expected8.

The probability a publisher needs an extra hop to reach its subscriber grows as the
internal flows increase but, the increment is not radical as the one seen with the growing
number of subscribers to feed. This is confirmed by Figure 21, since the input flows
increases but slower than the external input ones. The increment is emphasised when
the difference between the input and output flows becomes significant. This is the case
of the end behaviour of Figure 25, where the global input traffic is more than the double
of the internal one. So high that the cluster acts closer to a single node cluster rather
a 4-node cluster, as the internal flows are almost completely neglected by the amount of
the input coming from the external side.

Figure 24: Overhead vs Number of Publishers

8α = 1.13, Nsxs = 10,M = 4, Nsub = 5000

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 65 of 103

Figure 25: Cluster’s traffic vs Number of Publishers

4.2.4 Study of the Zipf Parameter Variation

Finally, we have studied how the overall topic distribution influences the behaviour of
the cluster. We issued subscriptions from a set of topics generated with different values
of the Zipf α parameter9. From a uniform distribution of the topic’s popularity, using a
lower α parameter, to a distribution where fewer topics have a higher relevance, having
the Zipf parameter alpha close to 3. The aforementioned behaviour is well illustrated by
Figure 26, where the cluster tends to behave like a single cluster node when the choice
of the topic, aka the popularity of a smaller set of topics, is highly increased. This is
translated to a significant decrease in the internal traffic flows, as the interest for common
topics is weakened, concurrently the probability a publisher has to choose a node with
the corresponding subscribers has risen.

9Nsxs = 10,M = 4, Nsub = Ntop = 5000

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 66 of 103

Figure 26: Overhead vs the Zipf parameter

Figure 27: Cluster’s traffic vs the Zipf parameter

4.2.5 Study of IoT scenario

In this section, we are going to explain how we have modelled the simulations for the IoT
scenario mentioned in Section 4.2. First off, we have changed the way a subscriber can
subscribe to a topic in an IoT fashion. Namely, we used a topic hierarchy to reproduce

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 67 of 103

an IoT environment related to a physical setting, e.g. buildingId/floorId/roomeId/sen-
sorType/sensorId. In this way, a subscriber not only can subscribe to a single topic but
can be interested in a higher level topic that embeds a given number of subtopics. Indeed,
the amount of subscriptions increases, with a given probability, as the user chooses more
topics than in the previously considered scenario.

We have undertaken the simulation in a steady scenario, where the number of clients
and topics does not change, to see the response of the system to a scale-out of the cluster’s
nodes. From Figures 28 we can confirm the overhead has similar behaviour to the one in
the social network scenario. The noticeable differences can be seen in the internal traffic
flows, in Figure 29. Its behaviour is one of the green line, that grows with respect to
the one in Figure 19 because of the properties of the set of topics. This means that a
subscriber can be interested in a topic with a considerable number of subtopics. This
follows an inevitable increase of the internal traffic since there could be a publication on
the higher-level topic that includes all the lower-level ones, or a publication on these. As
a result, the probability of internal flows increases considerably.

It is remarkable to note the evolution of the traffic flows as we increment the fanout of
the topics. Without a doubt, this simulation would bring a relevant rise of the streams of
the messages between the brokers. Indeed, Figure 31 highlights this behaviour, but also
the growing importance of the input traffic that brings the cluster to behave like a single
node when the connections are significantly high. It can be noted that the increasing
pace of both the internal and the external output traffic, grows with the number of
fanout almost the same, keeping the overall output traffic at bay.

Figure 28: Overhead vs The number of nodes in the cluster

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 68 of 103

Figure 29: Cluster’s traffic vs The number of nodes in the cluster

Figure 30: Overhead vs the fanout

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 69 of 103

Figure 31: Cluster’s traffic vs the fanout

4.2.6 Greedy Algorithm

At the beginning of the section, we have pointed out we have used two kinds of algorithms
for the distribution of the subscribers among all the cluster’s node. Up until now, we have
discussed the outcome of the random algorithm, in this section it will be explained the
second one, the greedy algorithm. It can be seen as a preliminary solution to reduce the
internal traffic and its effect to the performance of the cluster will be taken into account.

The goal of the greedy algorithm is to try to minimize the internal traffic flows of the
cluster as much as possible in order to reduce them close to the one node scenario taken
as a reference. As well as being able to properly scale the performance together with the
size of the cluster.

In order to achieve a greedy configuration of the subscribers among the cluster’s
node, the simulation tries, in a way, to clusterize the interests of the alike topics. To
be more clear, the algorithm associates to the same node, starting from the first one,
the subscribers with the greater number of similar topic’s subscriptions in a water filling
fashion way. The algorithm is going to group, as much as possible, similar subscribers in
the fewest number of nodes, instead of spreading them uniformly at random.

Undoubtedly, the efficiency of this algorithm, which is its ability to correctly clusterize
similar subscribers, strongly depends on the capacity of the node, as well as on the way
the subscribers picks up a topic and its popularity.

All the figures confirm the inability to clusterize when the topics are sparse. As a
matter of fact, the behaviour of the internal traffic of the cluster, when using the greedy
algorithm, is almost the same as when the random one is used. We can see from the
figures than only in Figures 18 and 19 we can catch a difference from the 12 − th node,
as the algorithm starts to clusterize correctly. We can emphasise this behaviour choosing

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 70 of 103

a smaller number of subscribers as well as publishers and realize Figures 32 and 33. It is
striking the differences with respect to the internal traffic shown in green, which is almost
the quadruple for the end behaviour of the graph.

Figure 32: Overhead vs Number of nodes in the cluster, 1000 subscribers

Figure 33: Cluster’s traffic vs Number of nodes in the cluster, 1000 subscribers

Indeed, this is not a solution valid for all the configurations to guarantee a linear
scaling of the performance with the cluster size but is a solution that works well for a set

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 71 of 103

of subscribers that have a certain similarity in choosing the topics.
This behaviour is significantly confirmed in the IoT scenario, where, for instance, the

probability of subscribing to a subtopic is definitely higher than subscribing to its root
tree topic, as Figures 30 and 31 notably show. The figures show how the algorithm better
performs in this kind of scenario rather than the previously considered with a sparse set
of topics.

4.3 Conclusions and impact on the VirIoT architecture

The central problem addressed in this section is the performance behaviour of MQTT
clusters (e.g. to be used in the VirIoT architecture) when scaling out the number of cluster
nodes. To start understanding the issue, we undertook some measurements considering
different cluster configurations, ranging from a cluster with one broker, up to a cluster
with 4 brokers using different MQTT implementations. The results suggested a behaviour
not dependent on the implementation and showed a sub-linear evolution of the cluster’s
performance with the scaling of the brokers. Notably, to maintain the same performance,
in terms of latency, the cluster tends to satisfy only half of the expected throughout. The
above-mentioned outcome suggested us digging deeper into the matter, more specifically
to understand better the behaviour of the internal traffic flows of the cluster.

To study a significant amount of examples, we have developed a MATLAB simulator.
In this way we were able to study better the issues in two different pub/sub scenarios:
the social network and the IoT, simulating them with some real use-case examples.

From the resulting simulations, we have highlighted the behaviour of the cluster’s
traffic as well as confronting it with the one of the single node schema. As a result,
we have proposed an initial naive greedy algorithm which, however, provided limited
performance enhancements, especially when the number of topics per subscriber increase,
as it may occurs for a vSilo with many vThings.

Consequently, we propose a more radical topic isolation approach for the future release
of the VirIoT architecture (see next D2.3, D3.2, D4.2) , where topics are strictly bounded
to different brokers of the cluster and architectural entities must connect to more than
one broker. For instance, control topics should be managed by a dedicated broker (or sub-
cluster of them) and vThing data topics must be partitioned on a set of different brokers.
Accordingly, the system messages and components should be upgraded to support such
a multi-broker configurations.

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 72 of 103

5 Security

In this section we address the security topic in the frame of our Fed4IoT architecture. To
do so we evaluate the different interactions that can be performed among the components
of the architecture from both an internal and external point of view so that we can extract
security requirements to later introduce a series of technologies that address these issues.

5.1 Introduction and Motivation

Figure 34 presents a diagram of our VirIoT architecture which illustrates the interactions
among its components and draws its security perimeter. We have classified the inter-
actions in two different groups: internal (blue) and external (green) communications.
Internal communications and external communications call for different requirements in
terms of security.

Figure 34: Main interactions of the VirIoT platform

While internal communications are performed inside a security domain conceptually
owned by a single stakeholder, and therefore, between components whose functionality
has been defined and developed inside a controlled system, with a set of well-known

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 73 of 103

APIs and endpoints that can be used, external communications occur between the in-
ner VirIoT components and other external components such as Data Producers, VirIoT
Users/Tenants or external platforms whose behaviour cannot be controlled, and whose
communication payloads may traverse the Internet and be eavesdropped or manipulated
by malicious users or services. For this reason, the requirements raised by internal com-
munications are different from those raised by external ones.

Securing internal communications may just require, on the one hand, integrity of
internal messages, which can be achieved by the use of certificates and SSL/HTTPS.
Focusing, on the other hand, on the interactions between users/admin or services and
the Master Controller, we must manage the access control to the latter, so that only
authenticated and authorised entities can perform specific sets of actions, according to
access control policies (e.g. by using JWT-based Access Control or Role-Based Access
Control).

Additionally, since VirIoT is a virtualization platform, our attack surface is extended
by the fact that vSilos are under the control of Tenants, which are non-trusted entities
from VirIoT’s perspective, and may maliciously try to inject fake messages either in the
control or in the data internal planes. For this reason we introduce data-centric digital
signatures of the messages, to let us refuse to acknowledge and discard fake information.

Much differently, external communications, such as the communication between Con-
sumers and vSilos or between System vSilo and a federation of platforms corresponding
to different domains, are exposed to more dangerous threats which require to strengthen
the security means, by providing not only an access control mechanism, but also data
integrity and privacy in a less controlled environment.

Finally, the communication between Providers/Producers and ThingVisors deserves
special mention because it lets us define mechanisms to audit what Providers are inte-
grated into our VirIoT platform, with the goal to also define an agreement with them.
This triggers a different set of requirements, which can be dealt with by means od Dis-
tributed Ledger Technologies (DLT) and the use of Smart Contracts, for instance.

In this deliverable we first analyse the different technologies which can fit the security
requirements of both internal and external communications. The following sections pro-
vide different technologies which cover the security aspects and topics introduced above,
such as authentication, authorisation, privacy, integrity and DLT, among others.

5.2 Authentication, Identity Management and Access Control

According to the diagram presented before, users and services should be able to access
to the VirIoT platform, and more specifically to operate with the Master Controller. In
order to control the actions performed by these users and services, a first step is required.
We need a mechanism that let us register the different users this platform have so that
only authenticated users must be the ones allowed to operate over the VirIoT platform.
Additionally, as we are explaining in the following section, our VirIoT platform also
requires mechanisms or technologies that allow us to manage the access to the Master
Controller and System vSilo.

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 74 of 103

Identity Managers are entities which traditionally has functionalities such as user/i-
dentity profile management or Single Sign On (SSO). This basic functionality has been
enriched in the latest years with other focused on the authentication process and the
privacy preserving mechanism so that in a security framework it became an anonymous
credential system that ensures user privacy and minimal disclosure of personal informa-
tion when accessing IoT services.

There are well-known enablers such as KeyRock10 or One-IdM11 which implement
this functionality representing identities with a set of attributes. The former offers also
the capability of being integrated with and access control management system which is
explained in the following section 5.2.2 so that we can provide fine grained access to the
resources of our system.

Because of the heterogeneous nature of IoT devices and networks, most of the recent
access control proposals have been designed through centralized approaches in which a
central entity or gateway is responsible for managing the corresponding authorization
mechanisms, allowing or denying requests from external entities. This is actually the fist
solution we used in VirIoT and that is discussed in section 5.2.1.

On the one hand, the inclusion of a central entity clearly compromises end-to-end
security properties, which is considered an essential requirement [20] on IoT, because of
the sensitivity level of potential applications. Besides, the dynamic nature of IoT sce-
narios with a potential huge number of connected devices complicates the access controls
management with the central entity, affecting scalability. Accordingly, in section 5.2.3 we
describe a more distributed solution, which also makes it possible to define access control
rules at a finer level (e.g. externally accessing the information stored in the System vSilo
component from an external federation or third party). Since this technology uses for
the definition of access control policies triplets following this representation <subject, re-
source and action>, it let us specify fine-grained access control such as <serviceX, System
vSilo, entityX> <serviceX, System vSilo, attributeY of entityX, attributeX of entityX>
which, unlike JWT-based Access Control provides a richer definition and more flexible
access control management.

5.2.1 JWT based Access Control

The JSON WEB Token (JWT) based access control is the simplest access control solution
we implemented (as defined in RFC7519). It has been already introduced in D3.1 when
we described VirIoT procedures. These procedures will be updated in the next release
of the D3.x series deliverable (D3.2) to include also other access control schemes here
discussed, such as XACML or DCapBAC, that currently are in a preliminary design
phase.

JWT is a fairly recent standard (year 2015), which allows a backend system to encode
certified claims in a payload to be transmitted as a JSON object. A claim is a name:value

10KeyRock: https://fiware-idm.readthedocs.io/en/latest/
11One-IdM: https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Identity Manage-

ment - One-IDM - User and Programmers Guide

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 75 of 103

Figure 35: JWT based login

tupla and all claims form a JSON object, called JWT token, which is digitally signed
and sent back to the client by the backend system during an authorization phase, e.g. a
login procedure. The digital signature can use a secret (with the HMAC algorithm e.g.
HS256) or a public/private key pair using RSA or ECDSA. As shown in the following
JSON object, the JWT payload contains i) mandatory/public claims defined by IANA,
such as Issued At (iat), Expiration Time (exp), JWT ID (jti), etc.; and ii) private claims
to be used within a specific backend system such as ’identity’ and ’user claims’ for our
VirIoT platform.

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 76 of 103

Figure 36: JWT based Access Control

JWT token payload

{

'iat': 1568105212,

'nbf': 1568105212,

'jti': '060e7128-7cde-40da-9731-e1c3439bc926',
'exp': 1572425212,

'identity': 'admin',
'fresh': False,

'type': 'access',
'user_claims': '{"role": "admin"}'

}

The token is packaged as
token=b64urlEnc(header).b64urlEnc(payload).b64urlEnc(signature) and the client
will use it in the HTTP Authorization Header from now on for subsequent calls to the
backend system, thus informing it of who is making the call. This will allow the system
to already have the authentication information directly in the token itself, thus avoiding
having to go through a database or use the sessions to store the authentication informa-
tion.

HTTP Header

Authorization: Bearer eyJ0eXAiOiJKV1Qi...<snip>...hHcIHOU"

Accept: application/json

Content-Type: application/json

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 77 of 103

Figure 35 and Figure 36 show how JWT access control scheme is used in the VirIoT
system for the interaction with the master controller. The Master Controller uses a JWT
proxy that intercepts HTTPs requests. The user (tenant) credentials are stored in an
identity/policy store, which is merely implemented as a MongoDB collection within the
SystemDB that contains the tuples <UserID,Hash(pwd),role,JWT token>.

In the login phase, the user pass username and password and the JWT proxy validate
them interacting with the system database that contains user identities and associated
policy. Currently, JWT based access control allows only user-related policy, and a user
can have the role of ’user’ or ’admin’. The access control policies related to these two
figures allow them to perform the following control operations:

• Administrator: add vSilo Flavor, add ThingVisor, create his vSilo, access his vSilo,
add/del vThing from his vSilo, listing and inspecting operations for all vSilos

• User: create his vSilo, access his vSilo, add/dev vThing from his vSilo, listing and
inspecting operations for his vSilos

Besides validation, the JWT proxy generates and sends back to the user the JWT
token embedding the ’identity’ and ’user credential’ claims. From now on the user will use
this token in next iterations with the Master Controller, which request VirIoT operations
such as add vThing, create vSilo, etc.

5.2.2 Policy-based Access Control - XACML

The eXtensible Access Control Markup Language (XACML) [21] is a standard, declara-
tive and XML-based language to express access control policies, which allows specifying
the set of subjects which can perform certain actions on a specific set of resources, based
on their attributes. Under the XACML data model, the definition of access control poli-
cies is mainly based on three elements: PolicySet, Policy and Rule. A PolicySet may
contain other PolicySets and Policies, whereas a Policy includes a set of Rules, specifying
an Effect (Permit or Deny), as a result of applying that Rule for a particular request.
The Target sections of these elements define the set of attributes from resources, subjects,
actions and environment to which the PolicySet, Policy or Rule are applicable. Moreover,
since different Rules might be applicable under a specific request, XACML defines Com-
bining Algorithms in order to reconcile multiple decisions. In addition, a set of obligations
(Obligations class) can be used to notify a set of actions to be performed related to an
authorization decision. Figure 37 below presents the XACML Policy Language Model as
explained in the previous paragraphs.

XACML architecture consists mainly of four elements:

• Policy Administration Point (PAP): it is used to create a policy or set of policies

• Policy Decision Point (PDP): it evaluates applicable policies and makes authoriza-
tion decisions

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 78 of 103

Figure 37: XACML Policy Language Model

• Policy Information Point (PIP): it acts as a source of attribute values

• Policy Enforcement Point (PEP): it is responsible for performing access control, by
making decision requests and enforcing authorization decisions

Finally, the main interactions between these components under XACML standard are
shown in Figure 38.

In light of this diagram, we can see that the different security policies which must
prevail over a certain system are defined by the PAP (1. Define policy). When a certain
service request accesses to a specific resource, it must issue a request message (2. Request
resource). This request arrives to the PEP which is the one which executes the security
policies and grants/denies the access to the resource to the service depending on them.
To do so, it forwards the service request (3. Forward request) to the PDP. Nevertheless,
the PDP could need extra information in order to make the security decision; this is
the reason why a Context Handler is the central element of this diagram. It will receive
each request (3 – 11) and forward it to the specific component the purpose of which is to
provide all needed information to the PDP to generate the security response associated to

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 79 of 103

Figure 38: XACML standard overview

the message 3. Finally, such response is received by the PEP which enforces the security
policy to the initial resource request.

Policy Administration Point
As described below, the PAP is responsible for generating the different security poli-

cies. The Figure 39 below presents a Web interface which is used by the security admin-
istrator to define the XACML security policies.

It counts with two administration sections (left panel): the first one to define security
policies and the second one to define the different attributes that are managed by the
former ones. In addition, there are some configuration aspects (right panel) that can be
modified by the last button. Figure 40 shows the relation between Subject, Resource and
Action attributes generation, defining them as generic pieces that will shape the policies.
These generic attributes are created implementing any predefined or even customized
XACML AttributeIDs that will enrich the expressiveness of the policies.

In this sense the possibility of defining customized policies has been increased and,
furthermore, the use of XACML obligations has been also considered and implemented as
part of the policy definition that will be used when generating Capability Tokens. This

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 80 of 103

Figure 39: PAP Main View

way, the Capability Manager will be informed about the lifetime of the token associated
with the specific policy.

Once the attributes for a Resource are defined, the attributes for Subjects and Actions
can be specified too (see Figure 41 above). A policy contains rules that express the actions
that are allowed or denied. For instance, we can create a policy with one rule and specify
the resource it is referring to, what action can be performed with that resource and the
subject that is allowed to do that. With the specified policies, a request can be made to
the PDP that has the location of the policies. The PDP evaluates the request to decide
PERMIT or DENY, returning the corresponding Obligation, if any, when supported.
The request is sent encoded in JSON [22], which provides a less verbose representation
of the information than other formats like XML, and improves the request processing
as well. If such request is successfully resolved, the PDP will return a response in the
form of {“Result”:”Permit”}. Regarding its implementation, the PDP is deployed as a
web service to be accessed by the entity acting as a PEP through the exchange of HTTP
messages with JSON payloads containing the XACML requests or responses.

Policy Decision Point
The PDP is based on web technologies to make a scalable and lightweight solution.

This PDP can be applied to any large scale deployment that requires XACML as policy
language. The PDP evaluates XACML policies in XML representation. However, the
requests are sent in JSON format, which improves the comprehension and the perfor-
mance in the exchanging of requests and responses. In [23] a comparison of the XACML
PDP and other PDP solutions are performed. This comparison shows that XACML PDP

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 81 of 103

Figure 40: Generalization of the AttributeID

achieves the performance improvements over existing solutions in terms of scalability and
efficiency.

5.2.3 Distributed Capability-Based Access Control

In a distributed approach, constrained devices (e.g. sensors, actuators) can make autho-
rization decisions without the need to delegate this task to a different entity. In this case,
end-devices are enabled with the ability to obtain, process and transmit information to
other entities in a protected way. However, in a fully distributed approach, the feasibility
of the application of traditional access control models, such as Role-Based Access Con-
trol (RBAC) or Attribute-Based Access-Control (ABAC), has not been demonstrated so
far. Indeed, as previously mentioned, such models require a mutual understanding of the
meaning of roles and attributes, as well as complex access control policies, which makes
challenging the application of them on resource-constrained device. In that sense, it is
necessary to consider the amount of computational resources which can be available on
the end-device, since it may not be sufficient to apply a complex access control mecha-
nism. Moreover, the impact of the potential applications of IoT in all aspects of our lives
is shifting security aspects from an enterprise-centric vision to a more user-centric one.
Therefore, usability becomes a key factor to be considered, since untrained users must be
able to control how their devices and data are shared with other users and services.

Recently, the Capability-Based Access Control model (CapBAC) has been postulated
as a realistic and promising approach to be deployed on IoT scenarios [24]. Inspired

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 82 of 103

Figure 41: Defining different Attributes

by SPKI Certificate Theory [25] and authoriZation-Based Access Control (ZBAC) [26]
foundations, CapBAC provides significant advantages over more established approaches
by providing support for least privilege and preventing security problems such as the
Confused Deputy problem [27]. Additionally, CapBAC simplifies user management tasks
since the definition of complex policies is not required. The key element of CapBAC is
the concept of capability, which was originally introduced by [28] as ”token, ticket, or key
that gives the possessor permission to access an entity or object in a computer system”.
This token is usually composed by a set of privileges which are granted to the entity
holding the token.

In a typical CapBAC scenario, an entity (subject) tries to access a resource of another
entity (target). Usually, a third party (issuer) generates a token for the subject specifying
which privileges it has. Thus, when the subject attempts to access a resource hosted in
the target, it attaches the token which was generated by the issuer. Then, the target
evaluates the token, granting or denying access to the resource.

Therefore, a subject which wishes to get access to some information from a target,
requires sending the token attached to the request. Thus, the target that receives such
a token already knows the privileges that the subject has; only a local Policy Decision
Point (PDP) further needs to verify the validity of the capability token. This procedure
simplifies the access control mechanism, and happens to be a relevant feature in scenarios
with resource-constrained devices since complex access control policies are not required
to be deployed on constrained end-devices.

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 83 of 103

Additionally, the token must be tamper-proof and unequivocally identified in order to
be considered in a real environment. Therefore, it is necessary to consider suitable cryp-
tographic mechanisms to be used even on resource-constrained devices which enable an
end-to-end secure access control mechanism. Moreover, given its high level of flexibility,
CapBAC could be also extended to consider contextual conditions related to parameters
which are locally sensed by end-devices. Also, this model could be complemented with
other access control models by providing automated tools to infer the privileges to be
embedded into the token.

Distributed CapBAC operation
The basic operation of our proposed DCapBAC is shown in Figure 42. Below, we

clarify the different steps of the access control process.

Figure 42: DCapBAC Operation Model

• Service Issue authorisation request. In this initial step, the service, application or
device issue an authorisation request which is handled by the Capability Manager.

• Authorisation validation. The Capability Manager translate this authorisation re-
quest into a XACML authorisation request which is in turn validated by the PDP
against the XACML policies file.

• XACML verdict. After a positive validation, the PDP issues a positive verdict,
which is received by the Capability Manager.

• Issue Capability Token. The Capability Manager issues a capability token to the
Subject to be able to access that resource.

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 84 of 103

• Access Request. Once the Subject has received the capability token, it attempts
to access the device. For this purpose, it generates a request, in which the token
is attached. This access request is handled by the PEP Proxy which validates the
capability Token.

• Access to the broker. After a positive validation of the Capability Token, the PEP
Proxy forwards the query to the broker, as well as it forwards its response to the
Service, Application or device.

Capability token
In order to implement our distributed capability-based access control approach, we

chose JSON as format to represent the capability token because of its suitability in
constrained environments, such as those suggested by IoT scenarios. The next figure
shows a capability token example, which has been used to demonstrate the feasibility of
our proposal. Below, a brief description of each field is provided.

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 85 of 103

Example of Capability Token

{

"id": "0h7be34m_0q2cx-7",

"ii": 1369300359",

"is": "jamartinez@odins.es",

"su": "LNNh3/iyzZ/PQbBsuD+joYmTncm=G2O3xRD/3R7IzsJPiix9brrulTC=",

"de": "http://platform.odins.es/",

"si": "uPTor1jxykFQUGxXnRVRm01+uZM=kebPXS9VERYSyX4VFeHH9gW/yQT=",

"ar": [

{

"ac": "GET",

"re": "temperature",

"f": 1,

"co": [

{

"t": 5,

"v": 25,

"u": "Cel"

},

{

"t": 6,

"v": 21,

"u": "Cel"

}

]

}

],

"nb": 1369300359,

"na": 1369300500

}

• Identifier (ID) (16 bytes). This field is used to un-equivocally identify a capability
token. A random or pseudo-random technique will be employed by the issuer to
ensure this identifier is unique.

• Issued-time (II) (10 bytes). Following the notation of [26], it identifies the time at
which the token was issued as the number of seconds from 1970-01-01T0:0:0Z.

• Issuer (IS) (variable size). Entity issuing and signing the capability token.

• Subject (SU) (56 bytes). It makes reference to the subject to which the rights from
the token are granted. A public key has been used to validate the legitimacy of the
subject. Specifically, it is based on ECC-based public-key cryptography; therefore,
each half of the field represents a public key coordinate of the subject using Base64.

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 86 of 103

• Device (DE) (variable size). It is a URI used to unequivocally identify the device
to which the token applies.

• Signature (SI) (56 bytes). It carries the digital signature of the token. As a signature
in ECDSA is represented by two values, each half of the field represents one of these
values using Base64.

• Access Rights (AR). This field represents the set of rights that the issuer has granted
to the subject.

• Action (AC) (variable size). Its purpose is to identify a specific granted action. Its
value could be any CoAP method (GET, POST, PUT and DELETE).

• Resource (RE) (variable size). It represents the resource in the device for which the
action is granted. – Condition flag (F) (1 byte). Following the notation in [28], it
states how the set of conditions in the next field should be combined. A value of 0
means AND and a value of 1 means OR.

• Conditions (CO). Set of conditions which have to be fulfilled locally on the device
to grant the corresponding action.

• Condition Type (T) (1 byte). The type of condition is verified as stated by [28].

• Condition value (V) (variable size). It represents the value of the condition.

• Condition Unit (U) (variable size). It indicates the unit of measure that the value
represents.

• Not Before (NB) (10 bytes). NB expresses a time value. Before NB the token must
not be accepted. Its value cannot be earlier than the II field and it implies the
current time must be after or equal than NB.

• Not After (NA) (10 bytes). NA represents the time after which the token must not
be accepted.

5.2.4 Shi3ld framework: An access control framework for RDF stores

In this section we describe an alternative technology that we have explored to implement
access control, which is more grounded in RDF and ontologies, thus using existing soft-
ware machinery and data models for semantically evaluating queries, in order to resolve
access control requests.

The Shi3ld [29] project adopts Semantic Web languages at its core, and it reuses
existing proposals, without adding new policy definition languages, parsers or validation
procedures. It provides protection up to the level of triples. However, the work does not
provide yet another context ontology: the model includes base classes and properties only,
and delegates refinements and extensions to domain specialists. The framework assumes
the trustworthiness of the information sent by the user, including data describing context

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 87 of 103

(e.g. location, device features, etc). The Shi3ld model is grounded on two ontologies,
as described in figure 43: S4AC deals with core access control concepts and PRISSMA
focuses on the user context. The access control model is built over the notion of Named
Graph, thus supporting fine-grained access control policies, including to the triple’s level.
Enforcing permission models is an envisioned use case for RDF named graphs.

Figure 43: The Shi3ld model at a glance (grey boxes represent core classes).

The shield relies on named graphs to avoid depending on documents (one document
can serialize several named graphs, one named graph can be split over several documents).
As stated by the authors, their policies can be considered as access control conditions
over g-boxes (according to W3C RDF graph terminology), with semantics mirrored in
the SPARQL language. The S4AC vocabulary reuses concepts from SIOC, SKOS, WAC,
SPIN.

Shi3ld is designed as a pluggable component for SPARQL endpoints. The access
control flow is described below:

• The user queries the SPARQL endpoint to access the content. Context data is sent
with the query and cached as a named graph using SPARQL 1.1 update language
statements. Each time a context element is added they use an INSERT DATA, while
they rely on a DELETE/INSERT when the contextual information is already stored
and has to be updated. Summarizing, the client sends two SPARQL queries: the
first is the client query to the data store, the second provides contextual information.

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 88 of 103

• The client query is filtered by the Access Control Manager instead of being directly
executed on the SPARQL endpoint.

• The Access Control Manager selects the set of policies affecting the client query,
i.e. those with a matching Access Privilege. This is achieved by mapping the client
query to one of the four Access Privileges defined by S4AC with the SPIN vo-
cabulary. The Access Conditions (SPARQL ASK queries) included in the selected
policies are executed. According to the type of Access Condition Set (i.e., conjunc-
tive or disjunctive), for each verified policy, the associated named graph is added
to the set of accessible named graphs.

Figure 44 is used by the authors to illustrate the control flow described above:

Figure 44: The scenario of access control enforcement in the Shi3ld architecture

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 89 of 103

5.3 Data-centric Security

As discussed above, protection of data that relies on perimeter security (access control
to data servers) plus secure internal communication channels is appropriate for tightly
closed deployments, where each component belongs to the same trusted zone. But users
and stakeholders (especially in IoT ecosystems) are, increasingly, not contained within
the perimeter of corporate networks anymore, and/or they cannot fully be trusted.

In our specific case, VirIoT’s attack surface includes the vSilos, whose Broker are
under direct control of Tenants, thus at risk of breaches from the inside, e.g. aimed to
inject malicious information in the internal MQTT data or control plane, to create fake
vThing data, to destroy vSilos of other tenants, etc. Consequently, we use data-centric
security techniques, based on digital signatures of the payloads, in order to protect them
both internally and externally, i.e. both from compromised, maliciously operated vSilos
and from non-certified data producers of the Root Data Domain, as depicted in Figure 45.

Generally speaking, we have to ask how much closed can the VirIoT IT infrastruc-
ture be perceived by external Producers, Consumers, Tenants and externally federated
Platforms, given that data might be:

• stored at multiple places

• shared while in-transit

• being worked by many components, prior to consumption

For instance, here follows a list of typical scenarios which show the broad range of
situations where the VirIoT infrastructure would be perceived as an open deployment,
endangdering its ability to protect data.

• Breaches from the inside are likely to occur, because vSilos are virtual-machines or
containers running inside our perimeter, but under the authority of Tenants, who
may act maliciously, trying to impersonate the Master Controller or a ThingVisor,
injecting fake control or data messages.

• VirIoT copies sensor data to Big Data centers and analytics clusters, or Fed4IoT
subcontractors, that manage data remotely on their personal devices and cannot
be fully trusted, are authorized to get data. Data could be tampered with and data
points be altered.

• There are GDPR/regulations that Fed4IoT, as a data controller and/or processor,
must comply with, that require maintaining control of data no matter where it
travels.

• VirIoT may want to implement its infrastructure on the public cloud, to save
money.

• VirIoT may want to share private sensitive data coming from sensors with different
audiences. Compliance with regulations is required, and each audience can have
its own relevant data subset and restrictions on access.

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 90 of 103

5.3.1 Data-centric Integrity and JSON Digital Signatures

Thus, applications consuming data coming from VirIoT shall assume that data can possi-
bly undergo forging or errors due to threats manifesting themselves within the boundaries
of our platform, or where ever while in-transit, stored or processed, i.e. both internally
and externally to VirIoT.

In all scenarios similar to the above ones, security must be able to protect data
integrity wherever it is being used, viewed or saved. Towards this end, data-centric in-
tegrity approaches based on digitally signing relevant data pieces tend to be the preferred
approach.

When we say that a node or component that is part of the VirIoT deployment is
untrusted, or better said, it operates within the boundaries of a possibly untrusted zone,
we are not proposing that the node is operated by malicious actors or dishonest service
providers. But we acknowledge that it is part of the attack surface, hence we equip
it with technologies that can guarantee, by end-to-end contracts and verification,
correctness of the data it manages. In other words, data-centric integrity adds a
security perimeter around data: security controls are embedded into data itself and they
travel with the data at-rest, in-transit and at-work, towards the goal of enabling detection
of data tampering and manipulation. End-users must be able to detect tampering, and
VirIoT must seamlessly integrate with technology enacted towards this goal.

A typical scenario where meeting such requirement may be challenging is illustrated
in Figure 45.

As a concrete example, we may assume that Producer 1 has traffic information in terms
of the number of cars per minute entering city streets, while Producer 2 has information
about air pollution of city streets. For instance, let the following data be produced by
Producer 1, telling us that, at a particular data point, 22 cars per minute have entered
Principal Avenue:

JSON traffic information in terms of cars per minute in a street.

{

"id":"Principal Avenue",

"type":"Street",

"ObservedCars": {

"type":"Property",

"value":"22"

}

}

Similarly, Producer 2 can tell us that (for instance at around the same time, we are
exemplifying the scenario here) there are 50 micrograms per cubic meter of Particulate
Matter PM25 in the same street.

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 91 of 103

Figure 45: The scenario of two digitally-signed Entity fragments being aggregated by
VirIoT

JSON pollution information in terms of PM concentration.

{

"id":"Principal Avenue",

"type":"Street",

"ParticulateMatter": {

"type":"Property",

"value":"50"

}

}

Developers of a novel smart city application would like to train a deep learning model
on data, correlating traffic with PM25 concentration, but need the data points to be
certified by the sensors producing them, in order to have a guarantee that no bias or
malicious stakeholders have influenced the resulting model.

We are thus investigating techniques that allow to digitally sign JSON documents in
plain text and maintain the validity of the signature even when the fields of the JSON
payload are re-arranged by the intermediate brokers, or even aggregated with other JSON

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 92 of 103

documents.
One promising approach is the Linked Data Signatures 1.0 specification published by

the W3C Digital Verification Community Group. This is an experimental specification
and is undergoing regular revisions. Its goal is to add ”authentication and integrity
protection to linked data documents through the use of public/private key cryptography
without sacrificing Linked Data features such as extensibility and composability” [30].

The key idea is to sign a a canonicalized document deriving from the original JSON,
that is a deterministic, unique representation of the original JSON, since the original
could have more that one possible representation. This process is sometimes also called
normalization.

The first step is to interpret the original JSON as a Linked Data document, by creating
a stable @context for it, so that it can be grounded into a RDF interpretation in terms of
triples, because each key in the original JSON now has a precise meaning and is associated
with a unique URI. We obtain the following JSON-LD document:

JSON-LD pollution information with example @context.

{

"@context": {

"id":"http://example.org/id",

"type":"http://example.org/type",

"value":"http://example.org/value",

"ParticulateMatter":"http://example.org/PM"

},

"id":"Principal Avenue",

"type":"Street",

"ParticulateMatter": {

"type":"Property",

"value":"50"

}

}

The second step is to apply the canonicalization algorithm, which takes as input the
above document, that has more than one possible representation, and always transforms
it into a deterministic representation, giving the following output:

RDF triples representing pollution information in normalized form.

_:c14n0 <http://example.org/type> "Property" .

_:c14n0 <http://example.org/value> "50" .

_:c14n1 <http://example.org/PM> _:c14n0 .

_:c14n1 <http://example.org/id> "Principal Avenue" .

_:c14n1 <http://example.org/type> "Street" .

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 93 of 103

We can see that a set of RDF statements is generated by the algorithm, which has
created two blank nodes :c14n0 and :c14n1, and has connected all statements to
them. Statements are also alphabetically sorted so that the normalized representation is
always the same, no matter the order of the fields of the original JSON, as long as the
original keys and values stay the same.

The third step is to digitally sign the canonicalized document, as follows:

Digitally signed JSON-LD pollution information.

{

"@context": [

{

"@version": 1.1

},

{

"id": "http://example.org/id",

"type": "http://example.org/type",

"value": "http://example.org/value",

"ParticulateMatter": "http://example.org/PM"

},

"https://w3id.org/security/v2"

],

"id": "Principal Avenue",

"type": "Street",

"ParticulateMatter": {

"type": "Property",

"value": "50"

},

"proof": {

"type": "RsaSignature2018",

"created": "2019-12-24T09:31:03Z",

"creator": "https://example.com/jdoe/keys/1",

"jws": "eyJhbGciOiJQUzI1NiIsImI2NCI6ZmFsc2UsImNyaXQiOlsiYjY0Il19..

AX4FFvQePKFKLPfKfoSpkgssC8gUL5Rahi-

jaPoiDSB2T1cB76vwbVvArn8DeFMmfDy3TXCdYvGv0G8JjYSytUH-

tWMPRkCHE3E53J6MBeJ_4YhULsNlcw1OOh8-6r-

L6pwuOJUjkhWb43oZ15Da33KnZClV78bXwixTDjkcuHw",

"nonce": "7e8032bb"

}

}

The resulting signature is a type of proof, and is comprised of information about the
signature, parameters required to verify it, and the signature value itself. A linked data
signature typically includes at least the following attributes:

• type (required): A URI that identifies the digital signature suite that was used to

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 94 of 103

create the signature.

• created (required): The string value of an ISO8601 combined date and time string
generated by the Signature Algorithm.

• nonce (optional, but strongly recommended): A string value that is included in the
digital signature and MUST only be used once for a particular domain and window
of time. This value is used to mitigate replay attacks.

• signature value (required): One of any number of valid representations of signature
value generated by the Signature Algorithm.

5.3.1.1 Challenges in Fed4IoT

By the very nature of Linked Data, NGSI-LD automatically allows our platfomr to ag-
gregate data points that refer to the same Entity. In the example above, both the traffic
information and the pollution information refer to the same street. Thus, when the two
distinct fragments are exported to the System vSilo, they get aggregated under the same
Entity. We introduce a second layer of signature (see again Figure 45) so that:

• the sensors that originally produced the data points securely associate each value
to the identifier of the street ”Principal Avenue”;

• VirIoT vouches for the aggregation process, digitally signing the resulting Entity,
composed by two distinct attributes (”ParticulateMatter” and ”ObservedCars”).

By consulting the public keys of both the Producer sensors and of VirIoT, the Con-
sumer application can be sure that the values have not been altered and that the platform
has aggregated the value within a single Entity in a meaningful way, and that no one has
injected other values into the same Entity afterwards.

We gain the following advantages:

• Non-repudiation

• Integrity

• Entities can be hosted on insecure servers

• Entities can be replicated and cached in several places

A second challenge is connected to the fact that, following this approach, we obtain
a JSON-LD document which is a Regular NGSI-LD Entity + Signature.

As we have said, Signature follows the Linked Data Signatures specification. But if
signature follows that W3C specification, the resulting document is not a valid NGSI-LD
document (it is, of course, a valid JSON-LD document).

This is due to the fact that the Signature portion cannot be one-to-one mapped to
a standard NGSI-LD Property. It uses a @context based on the following resources and
vocabulary:

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 95 of 103

• https://w3id.org/security/v1 and v2

• https://web-payments.org/vocabs/security

Thus, unfortunately the current model for NGSI-LD Properties dictates that each
Property must have a ”type”:”Property”, while the ”proof” field of the Signature has, for
example, a ”type”:”RSASignature2018” (or other kinds, dictated by the above security
vocabulary resources and @context).

So a simple addition of new fileds, such as the missing ”creator”, ”nonce”, ”jws”, to
the core fields of a standard NGSI-LD CIM Property is not enough, as the W3C Signature
cannot be interpreted as a ETSI CIM Property on a semantic level, so far.

Thus we are investigating the various possibilities to align the two standards and/or
allow VirIoT to manipulate digitally signed JSON-LD documents. The main idea is to
put the two standards side-by-side and create a straightforward bridging between them,
which would be able to protect from current/future changes to the structure of the Linked
Data Signature, that is currently evolving just like NGSI-LD is.

5.3.2 Data-centric Privacy and CP-ABE Access Control for Sensitive Data

External communication, as we already motivated at the beginning of this sections have
more strict requirements in terms of security. These communications can contain sen-
sitive information which not only must not be manipulated, but neither be accessible
for external parties. For this reason, in the following section we provide a technology to
broadcast information over a shared media in a privacy preserving way.

The requirements presented by common IoT scenarios require more flexible data shar-
ing models between entities while the privacy of smart objects involved is still preserved.
Unlike the current Internet, IoT interaction patterns are often based on short and volatile
associations between entities without a previously established trust link. In this section,
we review existing cryptographic schemes that can be potentially used to implement
a secure information sharing based on the push model. These mechanisms should be
applied on the smart objects themselves in order to provide an end-to-end secure data
dissemination.

Attribute-Based Encryption (ABE) is gaining attention because of its high level of
flexibility and expressiveness, compared to previous schemes. In ABE, a piece of infor-
mation can be made accessible to a set of entities whose real, probably unknown identity,
is based on a certain set of attributes. This represents a step forward in order to realize a
privacy-preserving and secure data sharing scheme in pervasive and ubiquitous scenarios,
since consumers do not need to reveal their true identity to obtain information, while
producers can be sure that their data are accessed only by authorized entities.

Based on ABE, two alternative approaches were proposed. In KP-ABE [31], a cipher
text is encrypted under a set or list of attributes, while private keys of participants are
associated with combinations or policies of attributes. In this case, a data producer has
limited control over which entities can decrypt the content, being forced to rely on the AA
entity issues appropriate keys for getting access to disseminated information. In contrast,

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 96 of 103

in a CP-ABE scheme [32], a cipher-text is encrypted under a policy of attributes, while
keys of participants are associated with sets of attributes. Thus, CP-ABE could be seen
as a more intuitive way to apply the concepts of ABE; on the one hand, a producer can
exert greater control over how the information is disseminated to other entities, On the
other hand, a user’s identity is intuitively reflected by a certain private key. In addition,
CP-ABE is secure to collusion attacks, that is, different keys from their corresponding
entities cannot be combined to create a more powerful decryption key. This feature is
due to the use of individual random factors for each key generation. Moreover, in order
to enable the application of CP-ABE on constrained environments, the scheme could be
used in combination with Symmetric Key Cryptography (SKC) [33]. Thus, a message
would be protected with a symmetric key, which would be encrypted with CP-ABE under
a specific policy.

5.3.2.1 Policies for information sharing

CP-ABE policies indicate the set of entities that are enabled to decrypt the information
to be shared by specifying the sets of attributes that these entities must satisfy, and they
allow combining them using logical operators.

The resulting CP-ABE policy is used to encrypt the information to be shared by a
dedicated CP-ABE engine subcomponent.

The following fragment shows an high-level example of a typical CP-ABE policy
which, as we can see, is a logical AND combination of specific attributes that can be
associated, for instance, to an entity: policy = "role:admin AND company:OdinS".

5.4 Distributed Ledger Technology

In this chapter, we investigate a possibility to use Distributed Ledger Technology (DLT)
to provide services according to agreements between users and service providers, that are
captured in machine-readable and verifiable sandboxes.

This approach will allow us to track the information exchange between VirIoT and
the Root Data Domain’s actors that give data to VirIoT’s ThingVisors. This exchange of
information can be captured into machine-readable agreements, and automatic decisions,
compensation and/or auditing can be performed, based on that.

DLT consists of at least two peers that store identical copies of a ledger each, and
each peer individually updates the ledger. When a ledger is updated, identical copies
of ledgers are correctly updated according to a consensus algorithm. A digital signature
technology, encrypting the hash of the data by secret key, ensures the authentication and
integrity of data. It makes possible to protect data from counterfeit. The concept of DLT
is derived from Blockchain, however there is no clear unique definition on the difference
between DLT and Blockchain. There are two types of Blockchain. Public Blockchain is
one type of Blockchain which opens to any parties. Private Blockchain is another type of
Blockchain which is accessible by the authorised limited parties. In this deliverable, when

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 97 of 103

we say DLT we mean Private Blockchain, because the access to DLT is to be limited to
authorised parties, in our scenario.

Thus the use of DLT enables to protect from counterfeiting an ”agreement” between
two parties. Our idea is to use DLT to protect agreements for some specific service
provisions of the VirIoT platform.

5.4.1 Smart Contract

Smart contract is a computer protocol to facilitate, verify, or enforce the negotiation or
performance of a contract. Smart contracts allow the performance of credible transac-
tions without third parties. As such, a DLT is suitable for smart contracts because of
its decentralised architecture. Execution of contract and settlement are automatically
processed by a computer program.

In order to support smart contracts by Blockchain/DLT, a smart contract is described
by a specific transaction logic, which defines the conditions (input data and trigger) and
settlements (actions), and is defined within chaincode. Multiple smart contracts with the
same transaction logic can be defined within the same chaincode. All smart contracts are
accessible via API for Blockchain, as described in Figure 46.

Figure 46: Smart contract with Blockchain

5.4.2 Smart contract for Fed4IoT Platform

Smart City applications using the Fed4IoT’s VirIoT platform are required to access to
the virtual IoT data which is collected within the data domains. In order to authorise
the access to the Root Data Domain according to the contract between the Root Data
Domain and Fed4IoT platform, it is required to define the transaction logic for such

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 98 of 103

authorisation process, defining the trigger of the process, acceptance criteria and the
result of the process.

As an example, a smart contract enables that a root data domain actor can sell their
virtual IoT data to the user via Fed4IoT platform. A smart contract function is supported
by Fed4IoT platform to purchase their real IoT data. The prices for purchasing real IoT
data par each type of data is provided by the root data domain actor and agreed between
the root data domain and Fed4IoT platform. Based on this agreement, a transaction
logic is defined by smart contract function.

When the user of Fed4IoT requests the virtual IoT data via vSilo, it triggers a smart
contract transaction. The VirIoT platform then inputs user information and a set of types
of data to smart contract function. Smart contract function then creates an contract
based on the agreement between platform and root data domain. Possible counterfeiting
of the contract is protected by Blockchain.

Once the contract is confirmed, the smart contract function authorises the user to
access to the virtual IoT data collected by root data domain via the VirIoT platform
and to initiate a money transaction to root data domain. A new contract or updated
contract will be created when a new set of service is requested to Fed4IoT, using the
same transaction logic as described in Figure 47.

Figure 47: Exampled smart contract application to Fed4IoT

This approach, using smart contract functions, can be used for any kind of contract
(e.g., service authorisation without payment), once a transaction logic is defined according
to the business logic.

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 99 of 103

6 Conclusion

In this deliverable we have presented a first major revision of the Fed4IoT architecture
that was originally introduced in deliverable D2.2.

The present revision concerns new components devoted to semantic registration of the
data pieces flowing through the VirIoT platform, that we introduce in order to enable
Tenants of the platform to carry out semantic searching for the relevant information that
fits their Applications.

Our approach, based on a Semantic Discovery component and a System vSilo, addi-
tionally allows to connect VirIoT to external platforms, forming a large-scale federation.

We leverage the ETSI NGSI-LD standard, to which Fed4IoT is actively contributing,
based on the findings of the project.

Experimental and simulation study of our topic-based pub/sub architecture for in-
ternal data distribution gave us useful insights about how we may restructure the topic
names and the inner workings of control+data planes, for better efficiency.

Transversely, we have started to introduce security and privacy-dedicated technologies
into our platform.

We expect to further develop our architecture, until we fully stabilize it in the next
architecture deliverable (D2.3) iteration, while the next iteration of deliverable D4.x series
will fully exploit the architecture and consolidate the design of the Information Sharing
Layer and of the Security framework.

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 100 of 103

References

[1] ETSI GS CIM 009. Context Information Management (CIM): NGSI-LD API.
[Online]. Available: https://docbox.etsi.org/ISG/CIM/Open

[2] W. Li, G. Tropea, A. Abid, A. Detti, and F. Le Gall, “Review of standard ontologies
for the web of things,” in 2019 Global IoT Summit (GIoTS). IEEE, 2019, pp. 1–6.

[3] IETF, “rfc8428 Sensor Measurement Lists (SenML),” https://tools.ietf.org/html/
rfc8428, 2018.

[4] Un/edifact rec 20 – codes for units of measure used in
international trade. [Online]. Available: http://www.unece.org/
tradewelcome/un-centre-for-trade-facilitation-and-e-business-uncefact/outputs/
cefactrecommendationsrec-index/code-list-recommendations.html

[5] J. Swetina, G. Lu, P. Jacobs, F. Ennesser, and J. Song, “Toward a standardized
common m2m service layer platform: Introduction to onem2m,” IEEE Wireless
Communications, vol. 21, no. 3, pp. 20–26, 2014.

[6] E. Mosquitto. An open source mqtt broker. [Online]. Available: https:
//mosquitto.org/

[7] VerneMQ. Clustering mqtt for high availability and scalability. [Online]. Available:
https://vernemq.com

[8] RabbitMQ. Rabbitmq. [Online]. Available: https://www.rabbitmq.com/

[9] HiveMQ. Reliable data movement for connected devices. [Online]. Available:
https://www.hivemq.com/

[10] eMQTT. The massively scalable mqtt broker for iot and mobile applications.
[Online]. Available: http://emqtt.io/

[11] Kubernetes (k8s): Production-grade container orchestration. [Online]. Available:
https://kubernetes.io/

[12] H. Kwak, C. Lee, H. Park, and S. Moon, “What is twitter, a social network or a
news media?” in Proceedings of the 19th international conference on World wide
web. AcM, 2010, pp. 591–600.

[13] MATLAB version 9.6.0.1114505 (R2019a) Update 2, The Mathworks, Inc., Natick,
Massachusetts, 2019.

[14] V. Setty, G. Kreitz, R. Vitenberg, M. Van Steen, G. Urdaneta, and S. Gimåker,
“The hidden pub/sub of spotify:(industry article),” in Proceedings of the 7th ACM
international conference on Distributed event-based systems. ACM, 2013, pp. 231–
240.

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 101 of 103

https://docbox.etsi.org/ISG/CIM/Open
https://tools.ietf.org/html/rfc8428
https://tools.ietf.org/html/rfc8428
http://www.unece.org/tradewelcome/un-centre-for-trade-facilitation-and-e-business-uncefact/outputs/cefactrecommendationsrec-index/code-list-recommendations.html
http://www.unece.org/tradewelcome/un-centre-for-trade-facilitation-and-e-business-uncefact/outputs/cefactrecommendationsrec-index/code-list-recommendations.html
http://www.unece.org/tradewelcome/un-centre-for-trade-facilitation-and-e-business-uncefact/outputs/cefactrecommendationsrec-index/code-list-recommendations.html
https://mosquitto.org/
https://mosquitto.org/
https://vernemq.com
https://www.rabbitmq.com/
https://www.hivemq.com/
http://emqtt.io/
https://kubernetes.io/

[15] Wikipedia contributors, “Publish–subscribe pattern — Wikipedia, the
free encyclopedia,” 2019, [Online; accessed 17-October-2019]. [On-
line]. Available: https://en.wikipedia.org/w/index.php?title=Publish%E2%80%
93subscribe pattern&oldid=917772811

[16] H. Liu, V. Ramasubramanian, and E. G. Sirer, “Client behavior and feed character-
istics of rss, a publish-subscribe system for web micronews,” in Proceedings of the
5th ACM SIGCOMM conference on Internet Measurement. USENIX Association,
2005, pp. 3–3.

[17] L. Breslau, P. Cao, L. Fan, G. Phillips, S. Shenker et al., “Web caching and zipf-like
distributions: Evidence and implications,” in Ieee Infocom, vol. 1, no. 1. INSTI-
TUTE OF ELECTRICAL ENGINEERS INC (IEEE), 1999, pp. 126–134.

[18] Y. Teranishi, R. Banno, and T. Akiyama, “Scalable and locality-aware distributed
topic-based pub/sub messaging for iot,” in 2015 IEEE Global Communications Con-
ference (GLOBECOM). IEEE, 2015, pp. 1–7.

[19] Scalagent. (2015) Benchmark of mqtt servers. [Online]. Available: http:
//www.scalagent.com/IMG/pdf/Benchmark MQTT servers-v1-1.pdf

[20] T. Heer, O. Garcia-Morchon, R. Hummen, S. L. Keoh, S. S. Kumar, and K. Wehrle,
“Security challenges in the ip-based internet of things,” Wireless Personal Commu-
nications, vol. 61, no. 3, pp. 527–542, 2011.

[21] O. Standard, “extensible access control markup language (xacml) version 2.0,” 2005.

[22] D. Crockford, “The application/json media type for javascript object notation (json),
2006,” URL http://tools. ietf. org/html/rfc4627, 2006.

[23] L. Griffin, B. Butler, E. de Leastar, B. Jennings, and D. Botvich, “On the perfor-
mance of access control policy evaluation,” in 2012 IEEE International Symposium
on Policies for Distributed Systems and Networks. IEEE, 2012, pp. 25–32.

[24] S. Gusmeroli, S. Piccione, and D. Rotondi, “A capability-based security approach
to manage access control in the internet of things,” Mathematical and Computer
Modelling, vol. 58, no. 5-6, pp. 1189–1205, 2013.

[25] J. L. Hernández-Ramos, A. J. Jara, L. Marin, and A. F. Skarmeta, “Distributed
capability-based access control for the internet of things,” Journal of Internet Ser-
vices and Information Security (JISIS), vol. 3, no. 3/4, pp. 1–16, 2013.

[26] J. Bradley, N. Sakimura, and M. B. Jones, “Json web token (jwt),” 2015.

[27] N. Hardy, “The confused deputy:(or why capabilities might have been invented),”
ACM SIGOPS Operating Systems Review, vol. 22, no. 4, pp. 36–38, 1988.

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 102 of 103

https://en.wikipedia.org/w/index.php?title=Publish%E2%80%93subscribe_pattern&oldid=917772811
https://en.wikipedia.org/w/index.php?title=Publish%E2%80%93subscribe_pattern&oldid=917772811
http://www.scalagent.com/IMG/pdf/Benchmark_MQTT_servers-v1-1.pdf
http://www.scalagent.com/IMG/pdf/Benchmark_MQTT_servers-v1-1.pdf

[28] S. Li, J. Hoebeke, and A. Jara, “Conditional observe in coap,” Constrained Resources
(CoRE) Working Group, Internet Engineering Task Force (IETF), work in progress,
draft-li-core-conditional-observe-03, 2012.

[29] L. Costabello, S. Villata, and F. Gandon, “Context-aware access control for rdf graph
stores,” vol. 242, 08 2012.

[30] W3C. Linked Data Signatures 1.0. Draft Community Group Report 18 October
2019. [Online]. Available: https://w3c-dvcg.github.io/ld-signatures

[31] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryption for fine-
grained access control of encrypted data,” in Proceedings of the 13th ACM conference
on Computer and communications security. Acm, 2006, pp. 89–98.

[32] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-based encryp-
tion,” in 2007 IEEE symposium on security and privacy (SP’07). IEEE, 2007, pp.
321–334.

[33] O. Garcia-Morchon, S. Kumar, S. Keoh, R. Hummen, and R. Struik, “Security con-
siderations in the ip-based internet of things draft-garcia-core-security-06,” Internet
Engineering Task Force, 2013.

Fed4IoT Del. 4.1: Smart-city information sharing services - First release Page 103 of 103

https://w3c-dvcg.github.io/ld-signatures

	Abbreviations
	Fed4IoT Glossary
	Introduction
	Purpose of the Document
	Executive Summary
	Quality Review

	Information Sharing Services
	The NGSI-LD standard from ETSI CIM ISG
	NGSI-LD Information Model and API
	NGSI-LD architecture

	Semantic Discovery Component
	System vSilo
	HTTP-based Information Sharing to External Platforms
	Distributed System vSilo

	Pub/Sub-based Internal Information Sharing
	Performance of VirIoT's MQTT dissemination system

	ICN-based Information Sharing for ThingVisor Factory

	Cross-Domain Information Sharing
	Introduction
	SenML NGSI-LD
	SenML overview
	NGSI-LD encoding

	NGSIv2 NGSI-LD
	oneM2M NGSI-LD
	Mapping from NGSI-LD to oneM2M
	Mapping from oneM2M to NGSI-LD

	Analysis of MQTT Clusters
	The scaling issue we found
	Sub-linear performance scaling

	Performance analysis
	Study of the Cluster's Nodes Variation
	Study of the Cluster's Subscribers Variation
	Study of the Cluster's Publishers Variation
	Study of the Zipf Parameter Variation
	Study of IoT scenario
	Greedy Algorithm

	Conclusions and impact on the VirIoT architecture

	Security
	Introduction and Motivation
	Authentication, Identity Management and Access Control
	JWT based Access Control
	Policy-based Access Control - XACML
	Distributed Capability-Based Access Control
	Shi3ld framework: An access control framework for RDF stores

	Data-centric Security
	Data-centric Integrity and JSON Digital Signatures
	Data-centric Privacy and CP-ABE Access Control for Sensitive Data

	Distributed Ledger Technology
	Smart Contract
	Smart contract for Fed4IoT Platform

	Conclusion
	Bibliography

