
Federating IoT and cloud infrastructures to provide scalable and interoperable Smart
Cities applications, by introducing novel IoT virtualization technologies

EU Funding: H2020 Research and Innovation Action GA 814918; JP Funding: Ministry of

Internal Affairs and Communications (MIC)

Deliverable 5.2

Pilot Integration - First Release

Fed4IoT Del. 5.2: Pilot Integration - First Release Page 1 of 54

Ref. Ares(2020)3427390 - 30/06/2020

Deliverable Type: Report
Deliverable Number: 5.2

Contractual Date of Delivery to the EU: 30.06.2020
Actual Date of Delivery to the EU: 30.06.2020

Title of Deliverable: Pilot Integration - First Release
Work package contributing to the Deliverable: WP5

Dissemination Level: Public
Editor: Antonio F. Skarmeta (OdinS),

Kenichi Nakamura (PAN)
Author(s): Juan A. Martinez, Juan A.

Sanchez, Antonio Skarmeta
(OdinS), Kenji Kanai (WAS),
Andrea Detti, Ludovico Funari
(CNIT), Kenichi Nakamura (PAN),
Tetsuya Yokotani (KIT), Hiroaki
Mukai (KIT), Gilles Orazi, Ahmed
Abid (EGM)

Internal Reviewer(s): Giuseppe Tropea (CNIT)
Abstract: This deliverable describes the first

release of the integration of the dif-
ferent pilots developed within the
scope of Fed4IoT.

Keyword List: Pilot; Integration; GitHub; Kuber-
netes

Fed4IoT Del. 5.2: Pilot Integration - First Release Page 2 of 54

Disclaimer

This document has been produced in the context of the EU-JP Fed4IoT project which
is jointly funded by the European Commission (grant agreement n 814918) and Ministry
of Internal Affairs and Communications (MIC) from Japan. The document reflects only
the author’s view, European Commission and MIC are not responsible for any use that
may be made of the information it contains

Fed4IoT Del. 5.2: Pilot Integration - First Release Page 3 of 54

Table of Contents

Abbreviations 8

Fed4IoT Glossary 10

1 Introduction 12
1.1 Purpose of the Document . 12
1.2 Executive Summary . 12
1.3 Quality Review . 12

2 Codebase Management and Integration 14
2.1 GitHub Strategy and Dockerized Components 14
2.2 Kubernetes Deployment . 15

3 VirIoT Cross-border Platform 15
3.1 Infrastructure . 15
3.2 Kubernetes . 16

4 Smart Parking Pilot 19
4.1 Description of the pilot . 19
4.2 Description of the components to be instantiated 19

4.2.1 Root Data Domain . 19
4.2.2 VirIoT Data Domain . 20
4.2.3 Tenant Data Domain . 22

4.3 Deployment strategy . 23
4.4 Data Model . 23

5 Illegal Waste Deposit Management Pilot 26
5.1 Description of the pilot . 26

5.1.1 Deployment Site . 28
5.2 Description of the components to be instantiated 28

5.2.1 Root Data Domain . 28
5.2.2 VirIoT Data Domain . 28
5.2.3 Tenant Data Domain . 29

5.3 Deployment strategy . 30
5.4 Data Model . 31

6 Cross-border Person Finder Pilot 32
6.1 Description of the pilot . 32
6.2 Description of the components to be instantiated 33

6.2.1 Root Data Domain . 33
6.2.2 VirIoT Data Domain . 34

Fed4IoT Del. 5.2: Pilot Integration - First Release Page 4 of 54

6.3 Deployment strategy . 35
6.4 Data model . 37

7 Wildlife Monitoring Pilot 38
7.1 Description of the pilot . 38
7.2 Description of the components to be instantiated 38
7.3 Deployment strategy . 39
7.4 Data model . 39

8 Conclusion 42

9 Annex: Data model updates 43
9.1 Smart Parking Pilot . 43

9.1.1 Sector . 43
9.1.2 Parking meter . 45

9.2 Illegal Waste Deposit . 47
9.2.1 Entities Overview . 48
9.2.2 Site Entity Use Case Attributes 48
9.2.3 Illegal Deposit Entity Use Case Attributes 51
9.2.4 Vehicle Stand Use Case Attributes 52
9.2.5 Vehicle Entity . 53

Bibliography 54

Fed4IoT Del. 5.2: Pilot Integration - First Release Page 5 of 54

List of Figures

1 Site-to-Site Connection . 15
2 VirIoT testbed among EU and JP Azure regions 16
3 Kubernetes cross-border cluster . 18
4 VirIoT main components on Kubernetes 18
5 Smart Parking architecture . 20
6 Smart Parking interactions VirIoT components 21
7 Parking Site functionality . 21
8 Regulated Parking Zone functionality . 22
9 Virtual Silo (orion-flavour) functionality 23
10 Smart Parking map-based GUI . 24
11 Deployment strategy for Smart Parking pilot 25
12 Example of illegal deposit . 26
13 Site for the deployment of the car counting use case. The camera will be

located on a mat at 4.5m height on the black spot. From this point of view
it is possible to see incoming and outgoing vehicles with a single camera. 27

14 Edge software architecture . 29
15 Deployment strategy of the smart camera 30
16 Concept image of Cross Border Person Finder pilot 33
17 Camera Virtualization API . 34
18 Protection of unauthorized access to ThingVisor 35
19 Deployment plan of Cross Border Person Finder pilot 36
20 Pilot system at Kanazawa Institute of Technology 38
21 Data exchanges via Fed4IoT system . 39
22 An example of NGSI-LD entity published by the thermometer Virtual Thing 41
23 Illegal Waste Deposit Management Data Model 48

Fed4IoT Del. 5.2: Pilot Integration - First Release Page 6 of 54

List of Tables

1 Abbreviations . 9
2 Fed4IoT Dictionary . 11
3 Version Control Table . 13
4 Smart parking entity types . 24
5 Virtual Things for Wildlife Monitoring 40
6 Sector attributes . 43
7 Parking meter attributes . 46
8 Illegal Waste Deposit Management use case entities 48
9 Site Use Case Attributes . 49
10 Illegal Deposit Use Case Attributes . 51
11 VehicleStand Use Case Attributes . 52

Fed4IoT Del. 5.2: Pilot Integration - First Release Page 7 of 54

Abbreviations

Abbreviation Definition
ADN Application Dedicated Node
AE Application Entity
AIMD Additive Increase/Multiplicative Decrease
AKS Azure Kubernetes Service
API Application Programming Interface
ASM Adaptive Semantic Module
ASN Application Service Node
AWS Amazon Web Services
CBPF Cross-border Person Finder
CIM Context Information Management
CSE Common Services Entity
ETSI European Telecommunications Standards Institute
FIB Forwarding Information Base
GE Generic Enabler
GDPR General Data Protection Regulation
HTTP HyperText Transfer Protocol
ICN Information Centric Networks
ICT Information and Communication Technologies
IN Infrastructure Node
IP Internet Protocol
ISG Industry Specification Group
JSON JavaScript Object Notation
MANO MAnagement and Network Orchestration
MMG Morphing Mediation Gateway
MN Middle Node
MQTT Message Queue Telemetry Transport
NGSI Next Generation Service Interfaces Architecture
NGSI-LD Next Generation Service Interfaces Architecture - Linked Data
NSE Network Service Entity
OMA Open Mobile Alliance
PIT Pending Interest Table
PPP Public-Private Partnership
RDF Resource Description Framework
RPZ Regulated Parking Zone
REST Representational State Transfer
SDK Software Development Kit
TCP Transmission Control Protocol
TM Topology Master

Fed4IoT Del. 5.2: Pilot Integration - First Release Page 8 of 54

TN Task Name
TV ThingVisor
UML Unified Modeling Language
URI Uniform Resource Identifier
VNF Virtual Network Functions
vSilo Virtual Silo
vThing Virtual thing
WLAN Wireless Local Area Network

Table 1: Abbreviations

Fed4IoT Del. 5.2: Pilot Integration - First Release Page 9 of 54

Fed4IoT Glossary

Table 2 lists and describes terms relevant to this deliverable.

Fed4IoT Del. 5.2: Pilot Integration - First Release Page 10 of 54

Term Definition

FogFlow An IoT edge computing framework that automatically orches-
trates dynamic data processing flows over cloud- and edge-
based infrastructures. Used for ThingVisor development

Information Centric
Networking

New networking technology based on named contents rather
than IP addresses. Used for ThingVisor development

IoT Broker Software entity responsible for the distribution of IoT infor-
mation. For instance, Mobius and Orion can be considered as
Brokers of the oneM2M and FIWARE IoT platforms, respec-
tively

Neutral-Format IoT data representation format that can be easily translated
to/from the different formats used by IoT Brokers

Real IoT System IoT system formed by real things whose data is exposed trough
a Broker

System DataBase Database for storing system information

ThingVisor System entity that implements Virtual Things

VirIoT Fed4IoT platform providing Virtual IoT systems, named Vir-
tual Silos

Virtual Silo (new
name for IoT slice in
D2.1)

Isolated virtual IoT system formed by Virtual Things and a
Broker

Virtual Silo Controller Primary system entity working in a Virtual Silo

Virtual Silo Flavour Virtual Silo type, e.g. ”Mobius flavour” is related to a Virtual
Silo that contains a Mobius broker, ”MQTT flavour” refers to
a Virtual Silo containing a MQTT broker, etc.

Virtual Thing An emulation of a real thing that produces data obtained by
processing/controlling data coming from real things

Tenant User that accesses the Fed4IoT VirIoT platform to develop
IoT applications through a vSilo

Root Data Domain Set of sources providing IoT information to the VirIoT plat-
form

Federated systems External IoT systems that share information with VirIoT
(through the System vSilo), forming a NGSI-LD global fed-
erated system

System vSilo NGSI-LD vSilo used at system level to share information of
vThings with external NGSI-LD federated systems

Table 2: Fed4IoT Dictionary

Fed4IoT Del. 5.2: Pilot Integration - First Release Page 11 of 54

1 Introduction

1.1 Purpose of the Document

This deliverable reports the first iteration for pilot integration. It provides information
about the strategy that Fed4IoT has followed in integrating the various components of the
pilots into software packages that can be deployed in the respective target environments.

1.2 Executive Summary

This deliverable is the result of Task 5.2: Pilot Integration, of this project. Within the
scope of this task, it deals with setting-up the deployment of test environments. The
partners present the design process for each of their pilots, as well as a list of specific
components for each of them, and how they integrate into the running platform.

This deliverable covers the following sections:

1) Codebase management and integration

2) Cross-border structure of the VirIoT testbed platform

3) Pilots and their integration with VirIoT platform

Regarding the codebase management and integration strategy, we define two phases.
The first one focuses on how we took advantage of the GitHub portal, coupling it with
Docker technology, for seamlessly integrating code of the different components. The
second one focuses on Kubernetes technology, in order to demonstrate easy handling of
our components.

Additionally, we show that we have already instantiated our VirIoT platform. We
describe the testbed structure and how we have leveraged this technology for better
development of the platform through Azure services provided by Microsoft’s Cloud and
the Kubernetes technology. The testbed spans EU and Japan clusters.

Finally, regarding the pilot integration, we define, for each use case, an overview
description and its aim, we identify the components of the VirIoT platform to be instan-
tiated for the pilot (ThingVisors and Virtual Silo) and how to deploy them, and we give
details about pilots’ data models changes, if any, from previous deliverable D5.1 of the
same Work Package, where we had started designing them.

As general remark, we notice that not all pilots are currently at the same level of
maturity/implementation. Indeed, this is just the first release of this deliverable.

1.3 Quality Review

The internal Reviewer for this deliverable is Giuseppe Tropea (CNIT).

Fed4IoT Del. 5.2: Pilot Integration - First Release Page 12 of 54

Version Control Table

V. Purpose/Changes Authors Date

0.1 ToC Juan Antonio Martinez, Antonio F.
Skarmeta (OdinS)

25/05/2020

0.2 Initial Version Juan A. Sanchez, Juan A. Martinez,
Antonio F. Skarmeta (OdinS),
Kenji Kanai (WAS), Kenichi Naka-
mura (PAN), Tetsuya Yokotani
(KIT), Hiroaki Mukai (KIT), Gilles
Orazi (EGM)

12/06/2019

1.0 Quality review Giuseppe Tropea (CNIT) 28/06/2020

1.1 Final review Andrea Detti (CNIT) 30/06/2020

Table 3: Version Control Table

Fed4IoT Del. 5.2: Pilot Integration - First Release Page 13 of 54

2 Codebase Management and Integration

VirIoT, the platform we have developed within the Fed4IoT project, comprises several
different components or enablers, which allow virtualising IoT information coming from
different data providers. One of the goals is to have users and consumers access this
information in a controlled and secure way, including mediated access to actuators.

Setting up a reliable strategy for quality control of the source code of such a platform,
which comes from different partners and, given the capabilities of the platform to manage
isolated containers, is implemented using several different programming languages and
programming patterns, is of paramount importance.

Deliverable D2.3 on the System Architecture provides the overall design of the var-
ious interfaces. In this Section of this deliverable we focus, instead, on issues of soft-
ware integration, impacting how we manage code of the Master-Controller, SystemvSilo,
ThingVisors, of the various flavours of vSilos, which are implemented both in Python and
in node.js programming languages, and of the security enablers.

There are different strategies that could have been applied for a seamless codebase
integration of the VirIoT components, ranging from a manual approach where code is
stored in different code repositories, up to more advanced ones where we can also take
advantage of the latest DevOps tools for an automated deployment and continuous inte-
gration.

During the course of the project we refined management and integration of the code-
bases in two steps: first we took advantage of the GitHub portal, coupling it with Docker
technology, for seamlessly integrating code of the different components. Secondly we fo-
cused on Kubernetes technology, in order to demonstrate easy handling and deploy of our
components. We opted for using GitHub because of the familiarity that partners have
with it, as well as the well-known capabilities that they provide as one of the most-known
systems for managing code. Then we started using cloud providers for a coordinated
deployment thanks to the Kubernetes technology. These two phases are explained in the
following subsections.

2.1 GitHub Strategy and Dockerized Components

GitHub is a well-known platform that helps assuring quality when developing services
and applications. Based on git repositories, GitHub is well-known world wide because
of the mechanisms it provides to services and application owners to improve the quality
of their development cycle, by allowing the community of developers to download, test,
and even improve the quality of progressive development, in a controlled manner, thanks
to the concept of pull-request by which they can request changes over the main branch,
which must be verified by the maintainers of the code before being integrated.

This sort of tool is also a very good approach for collaborative development, as it is
the case for the VirIoT platform, which has been developed in a collaborative fashion
among all partners. The advantages offered by this solution make it ideal for distributing
the platform to the public, and collecting feedback from the community.

Fed4IoT Del. 5.2: Pilot Integration - First Release Page 14 of 54

Further, Docker is one of the technologies which has gained a great popularity because
of its ease at configuring the running environment, defining what is going to be inside
the containers, and also speeding up universal execution of the corresponding instances.

For the key components of our platform, we have written and deployed on GitHub,
alongside the component’s code, automated shell scripts that take care of the creation,
building and updating of the corresponding Docker images, as well as pushing them to
DockerHub.

This strategy has allowed us to obtain two important objectives:

� Assuring the quality of our codebase, fostering collaboration among partners and
collaborative code writing.

� Provide an easy deployment cycle of our testbeds; of our open source platform.

� Give the opportunity to external developers to improve and give feedback about
our open source platform, possibly supporting validation of it by the developers’
community.

2.2 Kubernetes Deployment

Kubernetes allows for an orchestrated deployment in remote servers. In a second iteration,
we have progressed by allowing our VirIot platform to be deployed using this technology.
In the following Sections, we see how we have materialized the VirIoT platform, using
this technology, in two data centres in different countries, starting to pave the ground for
a system that can be exploited by the consortium.

3 VirIoT Cross-border Platform

The execution of the Fed4IoT pilots is supported by a cross-border deployment of VirIoT
that is composed of Microsoft Azure Virtual Machines running Kubernetes. This section
briefly describes related infrastructure-as-a-service, Kubernetes configuration and running
VirIoT components (Kubernetes Pods).

3.1 Infrastructure

Europe Virtual Network
West Europe

192.168.0.0/16

Japan Virtual Network
Japan East
10.0.0.0/16

VPN
Gateway

VPN
Gateway

IKEv2 Tunnel

Figure 1: Site-to-Site Connection

Fed4IoT Del. 5.2: Pilot Integration - First Release Page 15 of 54

The Azure services provided by Microsoft’s Cloud were used to provide the testbed
of the VirIoT platform. In this section we will describe the testbed structure and how we
have leveraged this technology for a better development of the platform. In particular, we
have exploited the regions West Europe and Japan East of Azure to realize our VirIoT
cross-border platform. Each region’s data center has some Virtual Machines that get
together to realize an on-premise Kubernetes cluster.

The cross-border interconnection between the EU/JP data centers can be visualized
in Figure 1. We have used two VPN gateways which use IPsec/IKE VPN tunneling to
establish a secure, stable and continuous connection between the virtual networks of the
two cloud sites.

The Virtual Machines we have deployed are of the Standard Dv3 family (2 vCPUs
and 8 GiB memory) equipped with Ubuntu Server 18.04 LTS. In particular, four are
operative inside the European site, whilst two in the Japan one, as Figure 2 shows.

Virtual Network
Gateway

Gateway Subnet

Default Subnet

VMsVMs

Virtual Network
Gateway

Gateway Subnet

Default Subnet

Virtual Network EU

EU-JP
Connection

Virtual Network JP

VMsVMsVMsVMs

Figure 2: VirIoT testbed among EU and JP Azure regions

3.2 Kubernetes

In this section we explain the Kubernetes configuration for this testbed. Since we are
leveraging Azure resources, they provide its customers with two main options for deploy-
ing a Kubernetes cluster:

� fully managed, ready-to-use Kubernetes service by Azure: Azure Kubernetes Ser-
vice (AKS);

Fed4IoT Del. 5.2: Pilot Integration - First Release Page 16 of 54

� configure your own Kubernetes cluster with resources provided by Azure (on-premise).

We have decided to go with the second choice for different reasons: first of all, using
Kubernetes as AKS means the cloud provider is hiding all the complexity from the user.
Running it as an on-prem bare metal deployment, means youre on your own for managing
these complexities including persistent storage, load balancing, configmaps, services,
availability, auto-scaling, networking, roll-back on faulty deployments, and more. This is
translated into higher complexity, but indeed better understating of all the components
running on the cluster, giving the ability to fine tune the requirements of the platform
for all the contributors of the project.

Now we will dive into the main characteristics of the cluster. We have set up the
Kubernetes cluster across all the available VMs in this manner: one machine is used as a
master node and is located inside the Azure European data center, while all the remaining
ones, three in Europe and two in the Japan region, are suited for being working nodes.

To support edge computing functionality we have exploited Kubernetes labels. Kuber-
netes labels enable users to map their own organizational structures onto system objects
in a loosely coupled fashion, without requiring clients to store these mappings. By us-
ing labels on nodes, it is possible to constrain the running of a pod to a specific node
that matches the exact label value (node-afnity) or, on the contrary, that a pod should
avoid being allocated on a particular node with a different label (pod-anti-afnity). We are
leveraging the aforementioned node-affinity to consider a Kubernetes distributed cluster
formed by a default zone and, optionally, multiple edge zones. The default zone has no
“viriot-zone” label. Edge zone nodes must be labelled with “viriot-zone” and “viriot-
gw” label, as follows: the value of the “viriot-gw” key must contain a public IP address
through which it is possible to access the edge cluster. We have depicted our high-level
cluster view in Figure 3, as we can see, we have used the “viriot-zone” and “viriot-gw”
labels to differentiate nodes not situated in the default cluster where, in this case, the
master node is located. Consequently, in the testbed we have deployed nodes located in
the Japan data center, labelled with viriot-zone=japan along with their default viriot-gw.

The VirIoT components are effortless deployed in Kubernetes using YAML files mak-
ing the configuration fast and flexible. In order to properly work, VirIoT platform needs
some necessary elements:

� the Master-Controller

� the SystemDB

� the internal MQTT cluster

The MQTT cluster must be present on each node to guarantee minimum latency
between the user accessing information and the VirIoT node. The broker of choice is
VerneMQ, a broker capable of clustering that can be deployed across the Virtual Ma-
chines. One replica of VerneMQ is deployed for each node and accessible among them
thanks to a StatefulSet deployment and its related service.

Fed4IoT Del. 5.2: Pilot Integration - First Release Page 17 of 54

Master Node

Europe Data Center Japan Data Center

Node viriot-gw

viriot-zone

Node

Node

Node

Node viriot-gw

viriot-zone

Kubernetes Cluster

Figure 3: Kubernetes cross-border cluster

Europe Data Center

Master Node

Node

VerneMQ

vSilo

Node

ThingVsor

VerneMQ

Node

Master ControllerMongoDB

Node

VerneMQ

Japan Data Center

vSilo

VerneMQ

Node

 viriot-zone

viriot-gw

VerneMQ

Node

ThingVisor

 viriot-zone

viriot-gw

Figure 4: VirIoT main components on Kubernetes

The main element of the VirIoT control plane is the Master-Controller. It is in charge
of managing the deployment of the elements of the entire platform after the requests of
the both administrators and tenants. In order to correctly work, the Master-Controller
needs some configurations, such as the namespace it is going to deployed, the IP address
of the default gateway for which it can be accessed from the external and other internal
IP addresses and Fully Qualified Domain Names. These configurations are deployed as
ConfigMaps, that allows to decouple configuration artifacts from image content to keep
containerized applications portable.

As described in deliverable D3.1, the System DB stores the run-time conguration of
VirIoT. The noSQL database in use is MongoDB and it is also deployed as a StatefulSet.
The data is saved as collections and it was added a further collection with respect to the
time of the referenced deliverable to save the overall system setting, settingsC.

The overall description of the main elements of the VirIoT platform deployed using
Kubernetes as an orchestrator can be seen in Figure 4.

Fed4IoT Del. 5.2: Pilot Integration - First Release Page 18 of 54

4 Smart Parking Pilot

4.1 Description of the pilot

The Smart Parking pilot tries to deal with one of the most common issues of big cities,
traffic congestion. One of the main causes which generate this problem is the vehicles
wandering along the city, searching for a parking spot in a certain destination area. Smart
Parking provides a solution to allow them to reduce the amount of time for this activity.

In this Smart Parking use case, the pilot is focused in Murcia, which is a city situated
in the south-east of Spain, having a population of 450.000 residents. This city has expe-
rienced a dramatic rise of accesses to the city centre in the last years, which provoke a
considerable increase in traffic congestion. Day-by-day, commuters, tourists and families
traveling by car collapse the city centre with cars intending to park at commerce, financial
and historical areas.

The aim of this Smart Parking use case is taking advantage of Fed4IoT framework to
provide a service that tracks the state of the parking spots, to provide the drivers with
this information beforehand and, as a consequence, to get more fluid traffic in the centre
of the city.

4.2 Description of the components to be instantiated

4.2.1 Root Data Domain

The Smart Parking solution provided by our Fed4IoT framework integrates the informa-
tion coming from the FIWARE-based Mi-Murcia platform. Figure 5 presents the most
relevant components of the envisioned platform according to this concrete use case.

Our Smart Parking use case receives two kinds of context sources:

� The availability of private parking sites in terms of unoccupied parking spots.

� The probability to be able to park in the Regulated Parking Zone (RPZ). obtained
via a (Machine Learning) model, trained based on the logged history of daily ex-
pended tickets.

For the case of the parking sites, the sensors, deployed in each private parking site,
send the number of actual unoccupied parking spots when a vehicle enters or exits from
the parking site. Usually, an IoT gateway is required to transmit this information to an
IoT platform too.

For the case of RPZ, since in Murcia city we count with old-fashion parking meters
equipped with highly-constrained CPU, during the day they are completely dedicated to
the ticket issuance task. These devices take advantage of the night time to perform the
transmission of the activity of the whole day, providing detailed information regarding
the expended tickets.

Fed4IoT Del. 5.2: Pilot Integration - First Release Page 19 of 54

Figure 5: Smart Parking architecture

4.2.2 VirIoT Data Domain

Here we describe all components we need to instantiate in the VirIoT platform in order
to have an operational Smart Parking pilot. These components are:

� Parking Site ThingVisor, which obtains the parking sites information coming
from the FIWARE-based Mi-Murcia platform.

� Regulated Parking Zone (RPZ) ThingVisor, which obtains the RPZ informa-
tion coming from the FIWARE-based Mi-Murcia platform.

� Virtual Silo (orion-flavour), which receives the parking sites and RPZ infor-
mation from the above ThingVisors and offers it to the Smart Parking pilot GUI.

Figure 6 shows the interactions between specific components of Smart Parking in
VirIoT.

Fed4IoT Del. 5.2: Pilot Integration - First Release Page 20 of 54

Figure 6: Smart Parking interactions VirIoT components

4.2.2.1 Parking Site ThingVisor

This ThingVisor component obtains parking sites information from the FIWARE-based
Mi-Murcia platform. To do this, it subscribes to the entities of the platform which contain
this specific information. When ThingVisor receives the notifications from the platform
(NGSIv2 format), it processes its payload and produces a neutral format payload (NGSI-
LD) which is sent to MQTT broker in a specific vThing topic. Once Thingvisor sends an
NGSI-LD payload, the Virtual Silos that are subscribed to the corresponding vThings will
receive the information. Figure 7 shows these functionality by describing the interactions
commented above.

Figure 7: Parking Site functionality

Fed4IoT Del. 5.2: Pilot Integration - First Release Page 21 of 54

4.2.2.2 Regulated Parking Zone (RPZ) ThingVisor

The functionality of this ThingVisor is the same as indicated in the Parking Site

ThingVisor. The unique difference is that this ThingVisor subscribes to the FIWARE-
based Mi-Murcia platform to obtain specific Regulated Parking Zones information. Fig-
ure 8 shows it.

Figure 8: Regulated Parking Zone functionality

4.2.2.3 Virtual Silo

The Virtual Silo component receives Neutral-Format data (NGSI-LD) through the plat-
form’s MQTT broker it is connected to. It receives whatever NGSI-LD payload was
previously published by the ThingVisors to the platform’s MQTT broker.

This component has a Virtual Silo Controller which processes the Neutral-Format data
and converts it to NGSIv2 data, which is stored in an Orion Context Broker, embedded
in the Virtual Silo, by issuing a request to the NGSIv2 API. This way, the Virtual Silo
offers to Smart Parking an NGSIv2 API to access its data, i.e., the information of parking
sites and RPZ. To access data, NGSIv2 offers two options, either using the entity queries
or through the subscription mechanism.

Figure 9 summarizes the functionality of this Virtual Silo.

4.2.3 Tenant Data Domain

This solution will provide a GUI, as depicted in Figure 10, allowing the user to specify
both the current location and the destination, as well as parking duration, the time when
she will arrive and other user preferences (maximum desired cost, maximum desired
distance from parking to destination, ...) by presenting a map-based web interface/App.
Once the selection is made, our Smart Parking solution makes a complex reasoning to
generate an informed recommendation about the best destination area where to park the
vehicle.

Fed4IoT Del. 5.2: Pilot Integration - First Release Page 22 of 54

Figure 9: Virtual Silo (orion-flavour) functionality

4.3 Deployment strategy

This subsection details how the components of the Smart Parking pilot that were men-
tioned and detailed in previous Section 4.2 will be integrated into the VirIoT platform.

On the one hand, Smart parking ThingVisors and Virtual Silo will be deployed in the
edge node of EU by the Master-Controller. There are two methods to deploy components
through the Master-Controller:

� using the Command Line Interface (VirIoT/CLI)

� using Master-Controller’s API

Once ThingVisors are deployed, notifications received from the FIWARE-based Mi-
Murcia platform are processed and sent to the Virtual Silo, which then is able to offer
the data through its NGSIv2 API of its local Orion IoT Context Broker.

On the other hand, the Smart Parking pilot application will be deployed in the cloud
and can then obtain Smart Parking information by requesting the corresponding infor-
mation directly to the Virtual Silo Broker via the standard NGSIv2 API. This instance
of the VirIoT platform is presented in Figure 11 where the specific deployment strategy
is presented.

4.4 Data Model

This subsection details the updates regarding the data model of the Smart Parking use
case. In this sense, FIWARE-based Mi-Murcia platform has the following entity types
that will be exposed to Smart Parking use case.

If we compare to the previous version of the implemented data model, we notice that
the ticket entity has been now removed.

Fed4IoT Del. 5.2: Pilot Integration - First Release Page 23 of 54

Figure 10: Smart Parking map-based GUI

Type Description
parkingsite This entity contains a harmonised description of a parking site.
policy This entity contains a harmonised description of a parking site

policy.
sector This entity contains a harmonised description of a Regulated

Parking Zone sector.
parkingmeter This entity contains a harmonised description of a Regulated

Parking Zone parking meter.

Table 4: Smart parking entity types

Here, we update the overview of entity types which have changed. All the details
regarding the following entities have been placed into the Annex.

Sector - This entity contains a harmonized description of a Regulated Parking Zone
sector. This entity has attributes to define:

� Policies, considering the public holidays.

� The geolocation polygon of the sector.

Parking meter - This entity contains a harmonized description of a Regulated Park-
ing Zone parking meter. This entity has attributes to define:

� Parking probability.

� Related sector.

� The geolocation point of the parking meter.

Fed4IoT Del. 5.2: Pilot Integration - First Release Page 24 of 54

Figure 11: Deployment strategy for Smart Parking pilot

Fed4IoT Del. 5.2: Pilot Integration - First Release Page 25 of 54

5 Illegal Waste Deposit Management Pilot

5.1 Description of the pilot

The idea behind this pilot is to use a camera associated with some deep learning machine
vision algorithm to perform the monitoring of a given site, and to send events as they
occur on the field. Our aim is to apply this scheme to the detection of incivilities, such
as illegal waste deposits.

Figure 12: Example of illegal deposit

We are in contact with the waste management service of the city of Grasse that helps
us to understand where and how these illegal deposits happen. It turns out that there
are some spots where this occurs more frequently. They already track these incivilities
using trail cameras. They hide them for a couple of days, permanently recording photos
of the site. After having taken back the camera, an operator looks through the thousands
recorded images to track incivilities and send plate numbers of vehicles to the local police.
It is important that the camera is hidden, otherwise it would be subject to vandalism.

The idea is thus to deploy a small and discrete system to monitor such a spot with a
smart camera and send alerts when an incivility is detected by the system. To achieve
this goal, the following has to be done inside the project:

� machine vision algorithm to perform the detection of events;

� hardware setup with camera, computer and connectivity to be deployed on the field;

� thingVisor implementation and data modeling for integration into the Fed4IoT
platform.

In order to train a deep learning model, we need to collect some real world examples
of illegal waste deposits. Our contact with the waste management service of the city of
Grasse helps us with this task. We are frequently visiting them to get some new images
they took using their trail cameras. An example of such images is given in Figure 12. We
are in the process of collecting this dataset and training our detection model. However,
this is a long term task and we need to work in parallel on the other tasks. This is why

Fed4IoT Del. 5.2: Pilot Integration - First Release Page 26 of 54

we decided, as an intermediate step, to work on a deployment of a site monitoring camera
that will be able to perform some simple detections.

It turns out that our local authorities have another issue we could try to solve with
a smart camera. They need to know how the carpooling parkings they build are used
by people. How many cars park in them each day? What is the average parking time?
Which kind of cars are using it? Could we infer from ”in and out” events how much CO2

emissions are avoided by the carpoolers using this parking? Technically we are very close
to the illegal waste deposit detection: we need the same hardware deployed on the field,
and the interface to the Fed4IoT platform is quite similar. The detection algorithm is
much simpler since we only need to detect license plates for which existing algorithms
are already usable.

Figure 13: Site for the deployment of the car counting use case. The camera will be
located on a mat at 4.5m height on the black spot. From this point of view it is possible
to see incoming and outgoing vehicles with a single camera.

Fed4IoT Del. 5.2: Pilot Integration - First Release Page 27 of 54

5.1.1 Deployment Site

The deployment site has been identified (see Figure 13). Its entrance and exit can be
monitored using a single camera.

The chosen hardware, to be deployed on site, is built around a Jetson Nano computer.
This is a low power, small form factor computer for embedded edge computing built by
Nvidia. It runs a quad-core CPU associated with a 472 GFlops GPU that is able to run
deep learning algorithm, its maximum power consumption running at full GPU capacity
is around 10W.

The camera has a 4MP sensor with IR illumination for night vision up to 50m. It also
provide an optical zoom and pan/tilt abilities to tune the framing of the image. We also
rely on integrated motion detection and ftp capabilities to send only candidate images to
the processing unit.

We considered to power the system using solar panels. We determined that 150W
solar panels with a 90Ah battery should power the system for a near 100% uptime. But
for some practical considerations (avoid the theft of the solar panels) we were allowed
to plug our system on a lighting system about 100m away. The solar panels system will
thus not be deployed for this part of the experiment.

5.2 Description of the components to be instantiated

5.2.1 Root Data Domain

On the edge side, the software architecture is as depicted in Figure 14. The motion
detection capabilities of the camera are activated such that each time the scene is chang-
ing, an image is uploaded into a fixed folder of the edge computer. A first process (the
feeder) is responsible to detect that a new image has arrived and triggers a license plate
detection by the ALPR component. It then reports the result in a message queue, this
message contains essentially the location of each license plate on the image (which helps
to determine if it is an entrance or exit event) and the detected license number. It is
then sent by another process, responsible for the delivery of the message to the Fed4IoT
VirIoT platform over an LTE connection.

At this moment, the system is ready for deployment on the field, we are waiting for
the execution of public works to install the mat and bring the power cable. It is planned
to be done on the 1st of July. We will install our setup the same day. It is currently
installed for tests near a road and detects correctly the vehicles passing on the road.

5.2.2 VirIoT Data Domain

Once the Edge processing is done, the message is received on a virtual computer in the
cloud that does the following pre-processings: query a license plate public database to
get some data of interest concerning the car (as vehicle type, engine type, CO2 emissions)
and then immediately pseudonymize the license plate number using a hash algorithm.

Fed4IoT Del. 5.2: Pilot Integration - First Release Page 28 of 54

Figure 14: Edge software architecture

The license plate is no more used nor stored in the following processes, ensuring users
privacy.

We first thought that the event data will be transmitted using a LoRaWAN network,
we thus implemented a LoRaWAN thingVisor, connected to the MQTT broker of the
LoRa Chirpstack network server. This ThingVisor helps to connect incoming small pieces
of data to their full NGSI-LD context. But it turns out that the LoRa network is not
well suited to our needs, in particular it does not have enough bandwidth to send all the
license plate detection events. We then switched to LTE connectivity, pushing data to
the same MQTT broker as the one used by the LoRa server, using a compatible message
format. This allows our LoRaWAN ThingVisor to be used for the integration of this
smart camera setup into the Fed4IoT VirIoT platform.

The entry/exit event detection for a given car park will be provided as a vThing in
the virtual data domain that will provide the NGSI-LD context described by the use case
data model (see the update of this model in annex).

At the moment of this writing, this ThingVisor implementation is at a beta stage: it
has all the needed functionalities but is not yet production ready. Some work has still to
be done in the testing and error management areas.

5.2.3 Tenant Data Domain

The tenant data domain will be handled by an instance of the Stellio NGSI-LD broker,
connected by a specialized vSilo. Some dashboards for the use case monitoring will then
be created using Grafana.

Fed4IoT Del. 5.2: Pilot Integration - First Release Page 29 of 54

5.3 Deployment strategy

All the software components described for this use case are represented in the figure 15.
On the monitored sites the cameras and the edge processing capabilities will be installed.
They will be connected with LTE (but also possibly using LoRa or WiFi) to a root data
domain MQTT broker on which some micro services are listening and provide:

� data format translation (essentially to put into the same format data coming from
the different networks)

� query the license plate database API and add the related data to the output message

� an anonymizer that computes a hash for the license plate

The MQTT server is the one used by the LoRaWAN installation already deployed.
The microservices will be installed on a dedicated virtual machine.

Figure 15: Deployment strategy of the smart camera

There will be one vThing instance for each smart camera installed on the field, de-
ployed on the VirIoT cross-border platform, EU site. It will be connected to the Root
Data Domain MQTT broker, listening to messages transformed by the micro services.

Fed4IoT Del. 5.2: Pilot Integration - First Release Page 30 of 54

Eventually, a vSilo making the link to a Stellio NGSI-LD broker will be instantiated
in the VirIoT cross-border platform, EU site. The cloud-based application will provide
dashboards for the monitored sites, will query the needed data to this broker.

5.4 Data Model

Despite we have already provided a first version of the data model in D5.1, we have
updated it as we are developing this pilot. So, we have taken the opportunity to bring
all the new updates to this document. They can be found in the Annex at the end of
this document.

Fed4IoT Del. 5.2: Pilot Integration - First Release Page 31 of 54

6 Cross-border Person Finder Pilot

6.1 Description of the pilot

The Cross-border Person Finder (CBPF hereinafter) pilot is one possible application to
demonstrate inter-operable capability of Fed4IoT’s VirIoT platform. The pilot aims at
virtually sharing the core functionality of CBPF application among surveillance cameras
installed in multiple cities, and then at performing complex image processing at the edge,
by complying to the requirements of data protection regulations, such as GDPR, avoiding
to move personal data to the centralized cloud if not necessary.

Currently, according to the white paper on tourism in Japan [1], the number of in-
ternational tourists is rapidly increasing, and tourism industry is grown remarkably. Ac-
cording to the white paper [1], in Japan, the number of international visitors to Japan by
air or sea is approximately 28.69 million in 2018, and this number is the second rank in
Asia. As well as increasing of inbound tourists, outbound tourists (i.e., Japanese overseas
travelers) are also increasing, and the numbers of them approximately 19 million in 2018.
Those who inbound and outbound tourists tend to be elderly people or youth and not
always able to speak local languages fluently. Therefore, their families are often worried
about their safety, and demand for smart applications that can notify the tourist safety
and monitor the tourist traces becomes increase.

Based on the above background, the CBPF pilot provides an application able to notify
the geographic location entered by a person, when authorized users, such as police officers,
city hall staff and families, issue a request to try to locate the person. A conceptual
representation of the CBPF pilot is shown in Figure 16. The CBPF application attempts
to find the requested person from video feeds coming from surveillance cameras installed
in multiple sties (e.g., EU and JP smart cities). In the pilot, in order to comply to the
requirement of GDPR, the images captured by the surveillance cameras do not travel
among cross-border countries (EU and JP). Thus, image processing is performed in edge
devices (possibly in-camera) at EU or JP sites, and the geographic location information
is extracted from the processed data.

In order to promote CBPF services, there are two security aspects we should consider.
The first aspect is user consent when the CBPF application in initiates service for a
specific person, in order to ensure that the person agrees to provide information which
is later necessary for the CBPF to operate (e.g., portrait of the person to be found).
The second aspect is verification of essential workers providing CBPF services. It can be
achieved with identity verification and attribute verification in case anonymity of workers
is required. It should be noted that the verification of essential workers can be used
for other applications (e.g., COVID-19) to verify essential workers such as doctors and
essential service employees (e.g., grocery store, and pharmacy). Based on the user consent
and the identity/attribute verification, CBPF application authorizes user to provide or
receive information necessary for carrying-out the CBPF service.

In the pilot, we give a typical use case of CBPF application as a tourist monitoring tool
for personal safety. However, the core functionalities of CBPF are to detect (and track)

Fed4IoT Del. 5.2: Pilot Integration - First Release Page 32 of 54

requested persons and ensure security. Thus, we expect that the CBPF application,
including individual components of the CBPF, can be adopted to various application
demands, such as tracking traces of criminal persons and tracking virus infected persons
(e.g., COVID-19).

Figure 16: Concept image of Cross Border Person Finder pilot

6.2 Description of the components to be instantiated

In this Section we describe the components, with a focus on a solution for the attribute-
based authentication system.

6.2.1 Root Data Domain

Camera Virtualization is a set of a method to use a surveillance camera as sensors. This
function will be integrated into surveillance camera, but it is implemented to the board
computer in this pilot.

Figure 17 illustrate how sensor functions are extracted from the camera. Surveillance
cameras are connected to the data repository. Sensor functions can be set via REST
API (Camera Virtualization API) from Thing Visor. The following two functions are
implemented for the pilot.

� Human counter

� Face feature extraction

Fed4IoT Del. 5.2: Pilot Integration - First Release Page 33 of 54

If the face feature extraction function is activated, the processing result can be sent to
the face matching service. The face matching service will be integrated to compare the
face feature of detected person and a missing person.

Figure 17: Camera Virtualization API

6.2.2 VirIoT Data Domain

In the pilot, we aim at having a privacy-preserving ThingVisor for detecting a specific
persons face and some attributes corresponding to the person. This specific ThingVisor
produces such context information as a Virtual Thing by converting the information to
the Neutral-Format. We assume that the required image processing, such as detecting
humans face is provided as Camera Virtualization APIs, and the APIs will be called
from ThingVisor. We assume that ThingVisor is developed by using ThingVisor Factory
described in deliverable D2.3. In addition, because CBPF application is operated as the
application receives a users request, such as image or attribute of target person, the re-
quest message is forwarded from vSilo to ThingVisor. Therefore, vSilo and ThingVisor
require a capability of handling downstream traffic like sensor actuation. After ThingVi-
sor receives the request, ThingVisor attempts to detect the requested person by calling
Camera Virtualization APIs with specifying the users specific request. Once ThingVisor
succeed the detection, ThingVisor produces such context information, including camera
meta data, as Virtual Thing by neutral data format such as NGSI-LD. The Virtual Thing
is transmitted to vSilo and vSilo finally publishes Virtual Thing to CBPF application.

6.2.2.1 Attribute-based authentication

To ensure the security of CBPF pilot, an authorized access to Virtual Things shall be
protected to prevent unexpected use of information. This can be done by service autho-
rization to ThingVisor.

There are three points to verify the access right to ThingVisor.

Fed4IoT Del. 5.2: Pilot Integration - First Release Page 34 of 54

� ThingVisor itself has a function to verify the request message has an access permis-
sion to ThingVisor.

� vSilo has a function to verify that the request from CBPF application has an access
permission to ThingVisor.

� CBPF application has a function to verify that the (end) user of CBPF application
has an access right to ThingVisor

Figure 18 illustrates how an unauthorized access to ThingVisor is protected.
Token is used to identify user and/or user attribute. The user select his/her identity

and/or attribute to be authenticated and issue the token signed by holder device. The
user send a service request message to CBPF application attaching the signed token.
CBPF application send an request to authenticate his/her identity and/or attribute to
Attribute-bases authentication system and receive a response and verify the use requesting
service is a right person.

Then the CBPF application send a service authorization request to Attribute-based
authentication system and then CBPF application receives an authorization code from
attribute-based authentication system.

Finally CBPF application will send a request to vSilo attaching an authorization code.
vSilo can request an certificate (and public key, if vSilo does not have effective public
key) corresponding to an authorization code. vsilo can verify an authorization code and
it will allow the service if the verification of authorization is successful.

This verification function can be also implemented to ThingVisor.

Figure 18: Protection of unauthorized access to ThingVisor

6.3 Deployment strategy

Because the CBPF pilot will try to demonstrate interoperability of Fed4IoT VirIoT sys-
tem, the pilot will be deployed at multiple domains. Candidate sites are Murcia and
Grasse as EU sites and Kumamoto and Hakusan as JP sites. A plan for deployment of
the pilot is shown in Figure 19. As described in Section 6.1, the pilot needs to comply
the requirement of GDPR, in other words, the surveillance camera images are prohibited

Fed4IoT Del. 5.2: Pilot Integration - First Release Page 35 of 54

to be exchanged among EU and JP. Therefore, as shown in the figure, ThingVisor for
CBPF will be deployed in the edge nodes of EU and JP sites, respectively. The deploy-
ment will be performed by Fed4IoT master controller. Inside ThingVisor, the images will
be processed by using Camera Virtualization APIs, and at this moment, the processed
data will be transformed not to be identified the individual personal information.

Unlike ThingVisor, vSilo and CBPF application will be deployed in the cloud. This
is because the CBPF application will be accessed by various users, such as police officers,
city hall staffs and families, and vSilo needs to broker Virtual Things produced at multiple
sites.As shown in Figure 18, as well as vSilo and CBPF application, attribute-based
authentication system is also deployed in the cloud in order to provide secure operations
among ThingVisor, vSilo and CBPF application.

In the demonstration, we will deploy ThingVisor to multiple sites at EU and JP. The
ThingVisor will be run on small compact PCs, such as Jetson Nano and/or barebone
PCs, and these nodes will be operated as Kubernetes worker nodes (e.g., edge nodes). In
addition, in the cloud side, we will deploy vSilo, CBPF application and attribute-based
authentication system on the public cloud servers, such as Microsoft Azure, and Sakura
Cloud. Through the demonstration, we will confirm data acquisition and interoperability
by using VirIoT system.

Figure 19: Deployment plan of Cross Border Person Finder pilot

Fed4IoT Del. 5.2: Pilot Integration - First Release Page 36 of 54

6.4 Data model

Data model used for Cross-border Person Finder is not updated from deliverable D5.1.

Fed4IoT Del. 5.2: Pilot Integration - First Release Page 37 of 54

7 Wildlife Monitoring Pilot

7.1 Description of the pilot

In rural areas, damage to agricultural products by wildlife is serious. It is effective to
use IoT technology to collect information, such as captured and approaching animals, for
countermeasures against wildlife damage, but the cost required for sensor device instal-
lation and application development is a problem. In local cities, budgets and manpower
are not enough, those factors prevent the introduction of IoT technology. To solve this
problem, sensor device installers and application software developers can be connected to
the Fed4IoT virtual IoT environment (the VirIoT platform), which may enable reuse/re-
purposing of sensors and reduces the time and cost required for IoT system development.
For verification purposes, a wildlife monitoring pilot system will be deployed in Hakusan
City, Ishikawa Prefecture, Japan, where wildlife damages are serious. In addition, a sensor
device will be installed for purposes other than animal damage control. By making these
exist as Virtual Thing in the VirIoT platform, it will be possible to develop applications
other than animal damage control applications, such as environment monitoring.

Figure 20: Pilot system at Kanazawa Institute of Technology

7.2 Description of the components to be instantiated

Figure 20 shows the configuration of the test environment for the pilot system at Kanazawa
Institute of Technology. Cameras and sensors are installed in the field to collect infor-
mation necessary for animal damage control, such as animal types and images, and envi-

Fed4IoT Del. 5.2: Pilot Integration - First Release Page 38 of 54

ronmental information such as temperature and humidity. The application displays the
detected animal position, environmental information, and the like. FIWARE is used as
a data utilization platform.

Figure 21: Data exchanges via Fed4IoT system

As shown in Figure 21, collected data from actual devices exists as Virtual Things
in VirIoT system, and they can be used by various application software developers as
needed. VirIoT system creates vSilo to collect the data needed by application software
developers from various Virtual Things. Since the data format is interchangeable (e.g.
oneM2M, NGSI, etc.) in VirIoT, assets can be used all over the world, depending on the
end-applications data formats.

7.3 Deployment strategy

The pilot system will be deployed around Kanazawa Institute of Technology Hakusan
campus at Hakusan City, Ishikawa Prefecture, Japan. Physical devices such as cameras,
sensors and the root domain gateway will be installed outside field. The recorder of the
cameras, some servers for related software running and animal detector (Jetson Nano)
will be installed in a KIT office. The recorder and the servers are accessible from the
Internet. Necessary ThingVisor and vSilos will be deployed in the JP site of the VirIoT
cross-border platform, exploiting the local MQTT Broker of the cluster for achieving low
latency.

7.4 Data model

Table 5 lists the Virtual Things in VirIoT, based on the Wildlife Monitoring use case and
its Real Things, as we are going to virtualize them to be flexibly reused in different vSilos.
The Table also reports the structure of the attributes that will be internally exposed as

Fed4IoT Del. 5.2: Pilot Integration - First Release Page 39 of 54

Virtual Things Attributes Description
Thermometer Location Location of the device

Temperature Sensed data
Hygrometer Location Location of the device

Humidity Sensed data
Rain gauge Location Location of the device

Rainfall Sensed data
Illuminometer Location Location of the device

Illuminance Sensed data
Animal detector Location Location of the device

Animal is present Sensed data
Animal type Results of judgement from photo by Jetson-

nano
Camera Location Location of the device

Photo data of animal URL of the image file
Camera type Type of camera
Resolution Provisioned value

Table 5: Virtual Things for Wildlife Monitoring

NGSI-LD properties of the corresponding Entities, conveyed from the ThingVisors to the
vSilos.

Figure 22 shows an example of the NGSI-LD Entity associated with the Thermometer
Virtual Thing. Other Virtual Things have a similar structure.

Fed4IoT Del. 5.2: Pilot Integration - First Release Page 40 of 54

1 {
2 "id": "urn:ngsi -ld:KIT:Thermometer01",

3 "type": "Thermometer",

4 "location":{
5 "type": "GeoProperty",

6 "value": {
7 "type": "Point",

8 "coordinates": [36.5313, 136.6285]

9 }
10 },
11 "temperature": {
12 "type": "Property",

13 "observedAt": "2020-05-12 16:02:56.343000",

14 "value": "1",

15 "unitCode": "CEL"

16 }
17 }

Figure 22: An example of NGSI-LD entity published by the thermometer Virtual Thing

Fed4IoT Del. 5.2: Pilot Integration - First Release Page 41 of 54

8 Conclusion

This deliverable reflects the work carried out during Task 5.2: ”Pilot Integration”. Al-
though this is only the first iteration, in this document we can already provide various
kinds of information regarding the integration process we designed for each of the pilots.
This integration process covered a description of the pilot, the specific instances of the
VirIoT platform they require, including the specific Thing Visors and Virtual Silos, and
also the place where such instance is going to be deployed (in terms of EU or Japan data
centres).

Along with this information, in this document we have also included the codebase
management and integration strategy that we have followed so that our VirIoT plat-
form is easy to be developed and deployed. We have highlighted the use of dockerized
components, GitHub repositories, as well as the use of Kubernetes.

We have described the details of our current testbed deployment, how it is based on
cloud resources from Microsoft Azure Clouds, and how these clusters of virtual machines
span EU and Japan regions.

This information will be completed in the second version of the document, where more
specific information will be provided by all the project’s pilots.

Fed4IoT Del. 5.2: Pilot Integration - First Release Page 42 of 54

9 Annex: Data model updates

9.1 Smart Parking Pilot

The updates in the data model of Smart Parking use case are:

� Sector removes numSpaces and numSpacesCapacity attributes

� Parkingmeter addsparkingProbability attribute

� Ticket is removed from Smart Parking data model.

The updated data model for sector and parkingmeter entities currently available in
Murcia is NGSIv2.

The updated data model for sector and parkingmeter entities is detailed below
(NGSIv2).

9.1.1 Sector

Sector attributes

Attribute Name Attribute Type Description Constraint

id @id Provides a unique identifier for an in-
stance of the entity either in the form
of a URI (i.e. either a publicly acces-
sible URL or a URN).

Mandatory

type @type Defines the type of the entity. In this
case sector.

Mandatory

timestamp DateTime Indicates the date/ time when the en-
tity was last observed in ISO 8601 for-
mat. The value of this will be set
by the server when the entity was ob-
served, if the entity has not been ob-
served it may have a null value.

Optional

name Text Indicates the name of sector. Recommended

policy RelationShip Indicates the parking site policy. This
attribute value must contain an iden-
tifier of an existing policy entity.

Recommended

policyPHolidays RelationShip Indicates the parking site policy (pub-
lic holidays). This attribute value
must contain an identifier of an exist-
ing policy entity.

Optional

location geo:json The location point of the parking me-
ter. See GeoJSON Specification (RFC
7946).

Recommended

Table 6: Sector attributes

Fed4IoT Del. 5.2: Pilot Integration - First Release Page 43 of 54

9.1.1.1 NGSIv2 Context Definition

The following NGSIv2 context definition applies to the sector entity.

Listing 1: smartparking:sector:context

1 "@context": {
2 "name": "http://purl.org/goodrelations/v1#name",

3 "policy": "http:// ontology.eil.utoronto.ca/icity/Parking/

ParkingPolicy",

4 "policyPHolidays": "http:// ontology.eil.utoronto.ca/icity/

Parking/ParkingPolicy",

5 "location": "https:// schema.org/location"

6 }

9.1.1.2 Example of sector entity

The following is an example instance of the sector entity (NGSIv2 format).

Listing 2: Example of smartparking:sector

1 {
2 "id": "urn:ngsi -ld:sector:Sector:1",

3 "type": "sector",

4 "@context": {
5 "type": "StructuredValue",

6 "value": [

7 "http://uri.etsi.org/ngsi -ld/v1/ngsi -ld-core -context.

jsonld",

8 "https://odins.org/smartParkingOntology/sector -

context.jsonld"

9],

10 "metadata": {}
11 },
12 "timestamp": {
13 "type": "DateTime",

14 "value": "2019-04-29T12:30:00Z",

15 "metadata": {}
16 },
17 "name": {
18 "type": "Text",

19 "value": "Sector 1",

20 "metadata": {}
21 },
22 "policy": {
23 "type": "Relationship", "value": "urn:ngsi -ld:policy:

Sector:1",

24 "metadata": {

Fed4IoT Del. 5.2: Pilot Integration - First Release Page 44 of 54

25 "entityType": {
26 "type": "Text",

27 "value": "policy"

28 }
29 }
30 },
31 "policyPHolidays": {
32 "type": "Relationship",

33 "value":"urn:ngsi -ld:policy:Sector:1:PublicHoliday",

34 "metadata": {
35 "entityType": {
36 "type": "Text",

37 "value": "policy"

38 }
39 }
40 },
41 "location": {
42 "type": "geo:json",

43 "value": {
44 "type": "Polygon",

45 "coordinates": [

46 [[-1.134584, 37.996461], [-1.127803, 37.997

983], [-1.126236, 37.995582],

47 [-1.124928, 37.994753], [-1.124348, 37.992825

], [-1.125099, 37.991743],

48 [-1.124992, 37.989257], [-1.127395, 37.989561

], [-1.130271, 37.989341],

49 [-1.131193, 37.990711], [-1.131386, 37.992098

], [-1.134584, 37.996461]]

50]

51 },
52 "metadata": {}
53 }
54 }

9.1.2 Parking meter

Parking meter attributes

Attribute Name Attribute Type Description Constraint

id @id Provides a unique identifier for an in-
stance of the entity either in the form
of a URI (i.e. either a publicly acces-
sible URL or a URN).

Mandatory

Fed4IoT Del. 5.2: Pilot Integration - First Release Page 45 of 54

Attribute Name Attribute Type Description Constraint

type @type Defines the type of the entity. In this
case parkingmeter.

Mandatory

timestamp DateTime Indicates the date/ time when the en-
tity was last observed in ISO 8601 for-
mat. The value of this will be set
by the server when the entity was ob-
served, if the entity has not been ob-
served it may have a null value.

Optional

name Text Indicates the name of parking meter. Recommended

parkingProbability Number Parking probability, between 0 and 1. Mandatory

sector RelationShip Indicates the sector of parking meter.
This attribute value must contain an
identifier of an existing sector entity.

Mandatory

location geo:json The location point of the parking me-
ter. See GeoJSON Specification (RFC
7946).

Recommended

Table 7: Parking meter attributes

9.1.2.1 NGSIv2 Context Definition

The following NGSIv2 context definition applies to the parking meter entity.

Listing 3: smartparking:parkingmeter:context

1 "@context": {
2 "name": "http://purl.org/goodrelations/v1#name",

3 "parkingProbability": "https://odins.org/smartParkingOntology

/parkingProbability",

4 "sector": "https:// odins.org/smartParkingOntology/sector",

5 "location": "https:// schema.org/location"

6 }

9.1.2.2 Example of parking meter entity

The following is an example instance of the parking meter entity (NGSIv2 format).

Listing 4: Example of smartparking:parkingmeter

1 {
2 "id": "urn:ngsi -ld:parkingmeter:Parquimetro:166",

3 "type": "parkingmeter",

4 "@context": {
5 "type": "StructuredValue",

6 "value": [

7 "http://uri.etsi.org/ngsi -ld/v1/ngsi -ld-core -context.

jsonld",

Fed4IoT Del. 5.2: Pilot Integration - First Release Page 46 of 54

8 "https://odins.org/smartParkingOntology/parkingmeter -

context.jsonld"

9],

10 "metadata": {}
11 },
12 "timestamp": {
13 "type": "DateTime",

14 "value": "2019-04-29T12:30:00Z",

15 "metadata": {}
16 },
17 "name": {
18 "type": "Text",

19 "value": "BUENOS LIBROS",

20 "metadata": {}
21 },
22 "parkingProbability": {
23 "type": "Number",

24 "value": 0.310721062618596,

25 "metadata": {}
26 },
27 "sector": {
28 "type": "Relationship",

29 "value": "urn:ngsi -ld:sector:Sector:1",

30 "metadata": {
31 "entityType": {
32 "type": "Text",

33 "value": "sector"

34 }
35 }
36 },
37 "location": {
38 "type": "geo:json",

39 "value": {
40 "type": "Point",

41 "coordinates": [-1.130981829, 37.99491059]

42 },
43 "metadata": {}
44 }
45 }

9.2 Illegal Waste Deposit

Figure 23 presents main entities and attributes of the use case.

Fed4IoT Del. 5.2: Pilot Integration - First Release Page 47 of 54

Figure 23: Illegal Waste Deposit Management Data Model

9.2.1 Entities Overview

Entities type and their basic attributes have been defined in Deliverable 4.2. In this section we
will focus more on entities and attributes related to the use case pilot.

Illegal Waste Deposit Management

Entity Name Entity Type

Site Site

SmartCamera Device

Vehicle Vehicle

IllegalDeposit IllegalDeposit

VehicleStand VehicleStand

EntryEventDetector Sensor

ExitEventDetector Sensor

PersonCounter Sensor

VehicleCounter Sensor

IllegalDepositDetector Sensor

Table 8: Illegal Waste Deposit Management use case entities

9.2.2 Site Entity Use Case Attributes

Fed4IoT Del. 5.2: Pilot Integration - First Release Page 48 of 54

Attribute
Name

Attribute Type Description

personNumber Property Indicates the number of persons de-
tected by the PersonCounter Sensor
installed in the SmartCamera.

vehicleNumber Property Indicates the number of vehicle de-
tected by the VehicleCounter Sensor
installed in the SmartCamera.

entryEvent Property This property is created when a ve-
hicle entry event is detected on the
site. The entry event is composed of
the candidateRegistrationPlate Prop-
erty and the reliability. The candi-
dateRegistrationPlate is a set of pos-
sible registration plate of an incoming
vehicle.

exitEvent Property This property is created when a vehi-
cle exit event is detected on the site.
The exit event is composed of the can-
didateRegistrationPlate Property and
the reliability. The candidateRegistra-
tionPlate is a set of possible registra-
tion plate of an outgoing vehicle.

observedAt TemporalProperty Indicates the date/ time that the in-
stance of the value of the property was
captured in ISO 8601 format.

observedBy Relationship Relates he observed properties to their
sources.

Table 9: Site Use Case Attributes

In the following listing an example of a Site Entity with the previous properties is presented.

Listing 5: Example of the Site Entity

1 {
2 "id": "urn:ngsi -ld:Site:01",

3 "type": "Site",

4 "createdAt": "2020-01-01T01:20:00Z",

5 "modifiedAt": "2020-05-04T12:30:00Z",

6 "personNumber": {
7 "type": "Property",

8 "value": "150",

9 "observedAt": "2020-01-01T01:20:00Z",

10 "observedBy": {
11 "type": "Relationship",

12 "object": "urn:ngsi -ld:Sensor:PersonCounter01"

Fed4IoT Del. 5.2: Pilot Integration - First Release Page 49 of 54

13 }
14 },
15 "vehicleNumber": {
16 "type": "Property",

17 "value": "150",

18 "observedAt": "2020-01-01T01:20:00Z",

19 "observedBy": {
20 "type": "Relationship",

21 "object": "urn:ngsi -ld:Sensor:VehicleCounter01"

22 }
23 },
24 "entryEvent": {
25 "type": "Property",

26 "observedAt": "2020-01-01T01:20:00Z",

27 "candidateRegistrationPlate": {
28 "type": "Property",

29 "value": "9b5dba5",

30 "reliability": {
31 "type": "Property",

32 "value": "80",

33 "unitCode":"P1"

34 }
35 }
36 "observedBy": {
37 "type": "Relationship",

38 "object": "urn:ngsi -ld:Sensor:EntryEventDetector"

39 }
40 },
41 "exitEvent": {
42 "type": "Property",

43 "observedAt": "2020-01-01T01:20:00Z",

44 "candidateRegistrationPlate": {
45 "type": "Property",

46 "value": "9b5dba5",

47 "reliability": {
48 "type": "Property",

49 "value": "80",

50 "unitCode":"P1"

51 }
52 }
53 "observedBy": {
54 "type": "Relationship",

55 "object": "urn:ngsi -ld:Sensor:ExitEventDetector"

56 }
57 },
58

Fed4IoT Del. 5.2: Pilot Integration - First Release Page 50 of 54

59 "@context": [

60 "https://uri.etsi.org/ngsi -ld/v1/ngsi -ld-core -context.

jsonld",

61 "https://raw.githubusercontent.com/easy -global -market/

ngsild -api -data -models/master/smartCameraUseCase/

jsonld -contexts/smartCamera -context.jsonld"

62]

63

64 }

9.2.3 Illegal Deposit Entity Use Case Attributes

Attribute Name Attribute Type Description

registrationPlate Property Provides This property the registra-
tion plate of the vehicle that causes
the Illegal Deposit.

wasteType Property Provides the type of the detected de-
posit.

detectedIn Relationship Relates the detected Illegal Deposit to
the correspondent Site.

Table 10: Illegal Deposit Use Case Attributes

In the following listing an example of an Illegal Deposit is presented.

Listing 6: Example of the Illegal Deposit Entity

1 {
2 "id": "urn:ngsi -ld:IllegalDeposit:01

3 "type": "IllegalDeposit",

4 "createdAt": "2020-05-01T01:20:00Z",

5 "modifiedAt": "2020-05-04T12:30:00Z",

6 "registrationPlate": {
7 "type": "Property",

8 "value": "9b5dba5",

9 "observedAt": "2020-01-01T01:20:00Z"

10 },
11 "wasteType": {
12 "type": "Property",

13 "value": "Wood",

14 "observedAt": "2020-01-01T01:20:00Z"

15 },
16 "detectedIn": {
17 "type": "Relationship",

18 "object": "urn:ngsi -ld:Site:01"

Fed4IoT Del. 5.2: Pilot Integration - First Release Page 51 of 54

19 },
20

21 "@context": [

22 "https://uri.etsi.org/ngsi -ld/v1/ngsi -ld-core -context.

jsonld",

23 "https://raw.githubusercontent.com/easy -global -market/

ngsild -api -data -models/master/smartCameraUseCase/

jsonld -contexts/smartCamera -context.jsonld"

24]

25

26 }

9.2.4 Vehicle Stand Use Case Attributes

The Vehicle Stand is an entity created when an Entry and an Exit Event are detected in a site
with the same registration Plate in a time interval. In a site we have a list of Entry and Exit
properties with a list of Registration plate and a reliability values. When an Entry and an Exit
events have the same or a similar registration plate (according to the reliability values), both
properties are deleted from the Site entity and then added to a new Vehicle Stand Entity. The
main Vehicle Stand attribute are depicted in Table 11.

Attribute Name Attribute Type Description

entryEvent Property Same as defined in the Site Entity.

exitEvent Property Same as defined in the Site Entity.

refSite Relationship Relates the Vehicle Stand to the cor-
respondent Site.

refVehicle Relationship Relates the Vehicle Stand to the cor-
respondent Vehicle.

Table 11: VehicleStand Use Case Attributes

In the following listing an example of a Vehicle Stand is presented.

Listing 7: Example of the Vehicle Stand Entity

1 {
2 "id": "urn:ngsi -ld:VehicleStand:01

3 "type": "VehicleStand",

4 "createdAt": "2020-05-01T01:20:00Z",

5 "modifiedAt": "2020-05-04T12:30:00Z",

6 "entryEvent": {
7 "type": "Property",

8 "registrationPlate": {
9 "type": "Property",

10 "value": "9b5dba5"

11 },

Fed4IoT Del. 5.2: Pilot Integration - First Release Page 52 of 54

12 "observedAt": "2020-01-01T01:20:00Z"

13 },
14 "exitEvent": {
15 "type": "Property",

16 "registrationPlate": {
17 "type": "Property",

18 "value": "9b5dba5"

19 },
20 "observedAt": "2020-01-02T01:20:00Z"

21 },
22 "refSite": {
23 "type": "Relationship",

24 "object": "urn:ngsi -ld:Site:01"

25 },
26 "refVehicle": {
27 "type": "Relationship",

28 "object": "urn:ngsi -ld:Vehicle:01"

29 },
30 "@context": [

31 "https://uri.etsi.org/ngsi -ld/v1/ngsi -ld-core -context.

jsonld",

32 "https://raw.githubusercontent.com/easy -global -market/

ngsild -api -data -models/master/smartCameraUseCase/

jsonld -contexts/smartCamera -context.jsonld"

33]

34

35 }

9.2.5 Vehicle Entity

Using on the Registration Plate number of a Vehicle, it is possible to query national data
bases for more details about the Vehicle. The Vehicle Entity follows the model of Vehicle in
https://schema.org/Vehicle.

Fed4IoT Del. 5.2: Pilot Integration - First Release Page 53 of 54

References

[1] Japan Tourism Agency: White Paper on Tourism in Japan, 2019. [Online]. Available:
https://www.mlit.go.jp/kankocho/en/siryou/content/001312296.pdf

Fed4IoT Del. 5.2: Pilot Integration - First Release Page 54 of 54

https://www.mlit.go.jp/kankocho/en/siryou/content/001312296.pdf

	Abbreviations
	Fed4IoT Glossary
	Introduction
	Purpose of the Document
	Executive Summary
	Quality Review

	Codebase Management and Integration
	GitHub Strategy and Dockerized Components
	Kubernetes Deployment

	VirIoT Cross-border Platform
	Infrastructure
	Kubernetes

	Smart Parking Pilot
	Description of the pilot
	Description of the components to be instantiated
	Root Data Domain
	VirIoT Data Domain
	Tenant Data Domain

	Deployment strategy
	Data Model

	Illegal Waste Deposit Management Pilot
	Description of the pilot
	Deployment Site

	Description of the components to be instantiated
	Root Data Domain
	VirIoT Data Domain
	Tenant Data Domain

	Deployment strategy
	Data Model

	Cross-border Person Finder Pilot
	Description of the pilot
	Description of the components to be instantiated
	Root Data Domain
	VirIoT Data Domain

	Deployment strategy
	Data model

	Wildlife Monitoring Pilot
	Description of the pilot
	Description of the components to be instantiated
	Deployment strategy
	Data model

	Conclusion
	Annex: Data model updates
	Smart Parking Pilot
	Sector
	Parking meter

	Illegal Waste Deposit
	Entities Overview
	Site Entity Use Case Attributes
	Illegal Deposit Entity Use Case Attributes
	Vehicle Stand Use Case Attributes
	Vehicle Entity

	Bibliography

