
Federating IoT and cloud infrastructures to provide scalable and interoperable Smart
Cities applications, by introducing novel IoT virtualization technologies

EU Funding: H2020 Research and Innovation Action GA 814918; JP Funding: Ministry of

Internal Affairs and Communications (MIC)

Deliverable 5.4

Pilot Integration - Second Release

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 1 of 109

Deliverable Type: Report
Deliverable Number: 5.4

Contractual Date of Delivery to the EU: 30.07.2021
Actual Date of Delivery to the EU: 30.07.2021

Title of Deliverable: Pilot Integration - Second Release
Work package contributing to the Deliverable: WP5

Dissemination Level: Public
Editor: Antonio F. Skarmeta (OdinS),

Kenichi Nakamura (PAN)
Author(s): Juan A. Martinez, Juan A.

Sanchez, Antonio Skarmeta
(OdinS), Kenji Kanai (WAS),
Andrea Detti, Giuseppe Tropea
(CNIT), Kenichi Nakamura (PAN),
Tetsuya Yokotani (KIT), Hiroaki
Mukai (KIT), Gilles Orazi, Ahmed
Abid (EGM), Bin Cheng (NEC)

Internal Reviewer(s): Giuseppe Tropea (CNIT)
Abstract: This deliverable describes the sec-

ond release of the integration of the
different pilots developed within the
scope of Fed4IoT.

Keyword List: Pilot; Integration; GitHub; Kuber-
netes

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 2 of 109

Disclaimer

This document has been produced in the context of the EU-JP Fed4IoT project which is
jointly funded by the European Commission (grant agreement n° 814918) and Ministry
of Internal Affairs and Communications (MIC) from Japan. The document reflects only
the author’s view, European Commission and MIC are not responsible for any use that
may be made of the information it contains

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 3 of 109

Table of Contents

Abbreviations 10

Fed4IoT Glossary 12

1 Introduction 14
1.1 Purpose of the Document . 14
1.2 Executive Summary . 14
1.3 Quality Review . 15
1.4 Progress related to previous deliverable 15

2 Codebase Management and Integration 17
2.1 GitHub Strategy and Dockerized Components 17
2.2 Kubernetes Deployment . 18

3 VirIoT Cross-border Platform 19
3.1 VirIoT Infrastructure . 19
3.2 VirIoT Kubernetes services . 20
3.3 VirIoT Deployment Guideline . 22

4 Smart Parking Pilot 23
4.1 Description of the pilot . 23
4.2 Description of the components to be instantiated 23

4.2.1 Root Data Domain . 23
4.2.2 VirIoT Data Domain . 24
4.2.3 Tenant Data Domain . 26

4.3 Deployment strategy . 27
4.3.1 Deploying VirIoT components . 27
4.3.2 Deploying Pilot application . 34
4.3.3 Edge-based Deployment with FogFlow 35

4.4 Data Model . 37

5 Carpooling Pilot 38
5.1 Description of the pilot . 38

5.1.1 Deployment Site . 38
5.2 Description of the components to be instantiated 39

5.2.1 Root Data Domain . 39
5.2.2 VirIoT Data Domain . 41
5.2.3 Tenant Data Domain . 42

5.3 Deployment strategy . 42
5.3.1 Root data domain deployment . 43
5.3.2 VirIoT data domain deployment 44

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 4 of 109

5.3.3 Tenant data domain deployment 44
5.4 Data Model . 45

6 Cross-border Person Finder Pilot 46
6.1 Description of the pilot . 46
6.2 Pilot Assumption . 47
6.3 Description of the components to be instantiated 48

6.3.1 ThingVisor Variations . 48
6.3.2 Attribute-based Authentication 53
6.3.3 Tenant Data Domain . 54

6.4 Deployment strategy . 54
6.5 Data model . 56

7 Wildlife Monitoring Pilot 57
7.1 Description of the pilot . 57
7.2 Description of the components to be instantiated 57
7.3 Deployment strategy . 58
7.4 Data model . 59

8 Modular Code for ThingVisors and vSilos 61
8.1 The thingVisor generic module.py python module 61

8.1.1 initialize vthing . 62
8.1.2 params . 62
8.1.3 publish attributes of a vthing . 63
8.1.4 publish actuation response message 63
8.1.5 upstream entities and upstream tv http service 64

9 FaceRecognition ThingVisor 66
9.1 How it works . 66

9.1.1 The Camera System . 67
9.1.2 The CameraSensor ThingVisor 67
9.1.3 The FaceRecognition ThingVisor 69
9.1.4 The vSilo that has a “detector” vThing 72

9.2 How to run it . 75
9.2.1 Running the CameraSensor ThingVisor 75
9.2.2 Running the Camera System . 76
9.2.3 Running the FaceRecognition ThingVisor 76
9.2.4 Run a vSilo . 77

10 Access Control Framework instantiation in VirIoT 78
10.1 Token-based Access Control of Actuators 78
10.2 DCapBAC Component functionalities . 82

10.2.1 IdM-Keyrock . 83
10.2.2 XACML framework PAP and PDP 84

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 5 of 109

10.2.3 Capability Manager . 84
10.2.4 PEP-Proxy . 84

10.3 DCapBAC Components operation . 85
10.3.1 IdM-Keyrock . 85
10.3.2 XACML framework PAP and PDP 86
10.3.3 Capability Manager . 89
10.3.4 PEP-Proxy . 91
10.3.5 Full integration view . 91

10.4 Configuring and testing . 91
10.4.1 IdM-Keyrock . 93
10.4.2 XACML framework PAP and PDP 96
10.4.3 Capability Manager . 97
10.4.4 PEP-Proxy . 99

11 Conclusion 105

12 Annex: Data model updates 106
12.1 Carpooling pilot . 106

Bibliography 109

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 6 of 109

List of Figures

1 VirIoT Infrastructure for Pilots . 19
2 VirIoT main components on Kubernetes 21
3 Smart Parking architecture . 24
4 Smart Parking interactions VirIoT components 25
5 Parking Site functionality . 25
6 Regulated Parking Zone functionality . 26
7 Virtual Silo (orion-flavour) functionality 27
8 Smart Parking map-based GUI . 28
9 Deployment strategy for Smart Parking pilot 29
10 Smart Parking Pilot components interactions 34
11 FogFlow-based deployment for smart parking 36
12 Demonstration of FogFlow-based Smart Parking 37
13 Example of entrance and exit images from a carpooling parking 38
14 Site where the deployment of the carpooling parking use case is deployed.

The camera is located on a mat at 4.5m height on the black spot. From
this point of view it is possible to see incoming and outgoing vehicles with
a single camera. 39

15 Edge software architecture . 40
16 Software modules of the carpooling pilot, blue show the root data domain,

green the VirIoT data domain and yellow the tenant one. 41
17 The carpool dashboard . 43
18 Concept image of Cross Border Person Finder pilot 47
19 Simple Relay CBPF ThingVisor . 50
20 Monolithic CBPF ThingVisor . 50
21 Service chaining CBPF ThingVisor . 52
22 Protection of unauthorized access to ThingVisor 54
23 Deployment plan of Cross Border Person Finder pilot 56
24 Pilot system at Kanazawa Institute of Technology 57
25 GUI of the wildlife monitoring application 58
26 Data exchanges via Fed4IoT system . 59
27 An example of NGSI-LD entity published by the thermometer Virtual Thing 60
28 FaceRecognition Architecture . 67
29 NGSI-LD Entity representing context information of a lamp 80
30 Virtual Actuator workflow, QoS = 2 . 81
31 set-on actuation-command . 82
32 DCapBAC Operation Model and Blockchain 83
33 IdM-Keyrock authentication . 85
34 XACML authorisation request verdict . 86
35 Capability Manager request . 90
36 PEP-Proxy request . 92
37 Full integration view . 92

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 7 of 109

38 IdM-Keyrock - Login . 94
39 IdM-Keyrock - Main page . 94
40 IdM-Keyrock - Link User Management 95
41 IdM-Keyrock - User registration form . 102
42 IdM-Keyrock - List of registered users . 103
43 PAP - Main page . 103
44 PAP - Attributes . 104
45 PAP - Policies . 104
46 Data Model used by the smart camera, the carpool pilot uses a subset of

this data model . 106

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 8 of 109

List of Tables

1 Abbreviations . 11
2 Fed4IoT Dictionary . 13
3 Version Control Table . 16
4 Virtual Things for Wildlife Monitoring 60
5 Carpool use case entities . 107

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 9 of 109

Abbreviations

Abbreviation Definition
ADN Application Dedicated Node
AE Application Entity
AIMD Additive Increase/Multiplicative Decrease
AKS Azure Kubernetes Service
API Application Programming Interface
ASM Adaptive Semantic Module
ASN Application Service Node
AWS Amazon Web Services
CBPF Cross-border Person Finder
CIM Context Information Management
CSE Common Services Entity
ETSI European Telecommunications Standards Institute
FIB Forwarding Information Base
GE Generic Enabler
GDPR General Data Protection Regulation
HTTP HyperText Transfer Protocol
ICN Information Centric Networks
ICT Information and Communication Technologies
IN Infrastructure Node
IP Internet Protocol
ISG Industry Specification Group
JSON JavaScript Object Notation
MANO MAnagement and Network Orchestration
MMG Morphing Mediation Gateway
MN Middle Node
MQTT Message Queue Telemetry Transport
NGSI Next Generation Service Interfaces Architecture
NGSI-LD Next Generation Service Interfaces Architecture - Linked Data
NSE Network Service Entity
OMA Open Mobile Alliance
PIT Pending Interest Table
PPP Public-Private Partnership
RDF Resource Description Framework
RPZ Regulated Parking Zone
REST Representational State Transfer
SDK Software Development Kit
TCP Transmission Control Protocol
TM Topology Master

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 10 of 109

TN Task Name
TV ThingVisor
UML Unified Modeling Language
URI Uniform Resource Identifier
VNF Virtual Network Functions
vSilo Virtual Silo
vThing Virtual thing
WLAN Wireless Local Area Network

Table 1: Abbreviations

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 11 of 109

Fed4IoT Glossary

Table 2 lists and describes terms relevant to this deliverable.

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 12 of 109

Term Definition

FogFlow An IoT edge computing framework that automatically orches-
trates dynamic data processing flows over cloud- and edge-
based infrastructures. Used for ThingVisor development

Information Centric
Networking

New networking technology based on named contents rather
than IP addresses. Used for ThingVisor development

IoT Broker Software entity responsible for the distribution of IoT infor-
mation. For instance, Mobius and Orion can be considered as
Brokers of the oneM2M and FIWARE IoT platforms, respec-
tively

Neutral-Format IoT data representation format that can be easily translated
to/from the different formats used by IoT Brokers

Real IoT System IoT system formed by real things whose data is exposed trough
a Broker

System DataBase Database for storing system information

ThingVisor System entity that implements Virtual Things

VirIoT Fed4IoT platform providing Virtual IoT systems, named Vir-
tual Silos

Virtual Silo (new
name for IoT slice in
D2.1)

Isolated virtual IoT system formed by Virtual Things and a
Broker

Virtual Silo Controller Primary system entity working in a Virtual Silo

Virtual Silo Flavour Virtual Silo type, e.g. ”Mobius flavour” is related to a Virtual
Silo that contains a Mobius broker, ”MQTT flavour” refers to
a Virtual Silo containing a MQTT broker, etc.

Virtual Thing (or
vThing)

An emulation of a real thing that produces data obtained by
processing/controlling data coming from real things

Tenant User that accesses the Fed4IoT VirIoT platform to develop
IoT applications through a vSilo

Root Data Domain Set of sources providing IoT information to the VirIoT plat-
form

Federated systems External IoT systems that share information with VirIoT
(through the System vSilo), forming a NGSI-LD global fed-
erated system

System vSilo NGSI-LD vSilo used at system level to share information of
vThings with external NGSI-LD federated systems

Table 2: Fed4IoT Dictionary

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 13 of 109

1 Introduction

1.1 Purpose of the Document

This deliverable reports the second iteration for pilot integration. It provides information
about the strategy that Fed4IoT has followed in integrating the various components of the
pilots into software packages that can be deployed in the respective target environments.

1.2 Executive Summary

This deliverable is the result of Task 5.2: Pilot Integration, of this project. As a result of
this task, this deliverable describes the VirIoT infrastructure (design, current instance,
and a guideline for its deployment) as a small lab scale experiment we initiated so that
a further validation could be performed in the forthcoming Deliverable 5.5 Pilot Deploy-
ment, test execution and results analysis.

Within the scope of this task, a second iteration of the pilots defined in Fed4IoT
is presented, focusing on how they have been set-up and integrated with the VirIoT
platform.

More specifically, this deliverable covers the following aspects:

1) Codebase management and integration

2) Cross-border structure of the VirIoT testbed platform

3) Pilots and their integration with VirIoT platform

4) The instance of the Access Control Framework in VirIoT

5) ThingVisors and vSilos modularity

6) A detailed view of a FaceRecognition ThingVisor

Regarding the codebase management and integration strategy, we define two phases.
The first one focuses on how we took advantage of the GitHub portal, coupling it with
Docker technology, for seamlessly integrating code of the different components. The
second one focuses on Kubernetes technology, in order to demonstrate easy handling of
our components.

Additionally, we show that we have already instantiated our VirIoT platform. We
describe the testbed structure and how we have leveraged this technology for better
development of the platform through Azure services provided by Microsoft’s Cloud and
the Kubernetes technology. The testbed spans EU and Japan clusters.

Regarding the pilot integration, we define, for each use case, an overview description
and its aim, we identify the components of the VirIoT platform to be instantiated for the
pilot (ThingVisors and Virtual Silo) and how to deploy them, and we give details about
pilots’ data models changes, if any, from previous deliverables of the same Work Package,
where we had started designing them.

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 14 of 109

We have included a section describing the modularity of ThingVisors and vSilos, also
reporting on the design of a generic thing visor python module that fosters re-usability
and quick prototyping of ThingVisors, as well as a section that provides a thorough view
of the FaceRecognition ThingVisor: it presents the capability of sharing a sensor among
multiple applications, as well as showing how this can be implemented through a chaining
of ThingVisors.

Finally, we have also described the Access Control Framework instantiation in VirIoT.
We provide a thorough view of the components comprising this framework, as well as how
they (inter)operate.

1.3 Quality Review

The internal Reviewer for this deliverable is Giuseppe Tropea (CNIT).

1.4 Progress related to previous deliverable

This document presents a second release of the pilot integration in VirIoT. As a second
iteration, we have introduce a number of improvements, as well as new sections in order
to cover all the actions performed during Task 5.2. In this sense, compared with the first
release, we have added three new sections:

8) Modular Code for ThingVisors and vSilos, describing the modularity of the code
for developing ThingVisors and vSilos.

9) FaceRecognition ThingVisor, detailing how this ThingVisor uses an actuation work-
flow to implement its capability, also explaining how its design exploits many key
features of the Fed4IoT architecture.

10) Access Control Framework Instantiation in VirIoT, explaining how the token-based
and the Distributed Capability-Based Access Control technologies are instantiated
and integrated into the VirIoT platform.

Additionally, the section about the cross-border aspects of VirIoT has been extended
with a new subsection presenting a set of deployment guidelines for the various compo-
nents of the platform.

Finally, each pilot’s contribution has been improved, updating the description of the
root data domain. Likewise, the deployment strategy has been extended, including new
subsections for describing the instantiation of the VirIoT components for each pilot. It
is also noteworthy that a new pilot for car pooling has been included in this document,
as a substitute for the Illegal Waste Deposit Management Pilot. The Annex contains the
details about the used data model.

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 15 of 109

Version Control Table

V. Purpose/Changes Authors Date

0.1 ToC Juan Antonio Martinez, Antonio F.
Skarmeta (OdinS)

13/05/2021

0.2 Smart Parking section Juan A. Sanchez, Juan A. Martinez,
Antonio F. Skarmeta (OdinS)

25/05/2021

0.3 VirIoT deployment guide-
line

Andrea Detti, Giuseppe Tropea
(CNIT)

25/05/2021

0.4 Access Control Framework
instantiation in VirIoT

Juan Andrés Sánchez, Juan Anto-
nio Martinez and Antonio Skarmeta
(OdinS)

03/06/2021

0.5 Carpooling Pilot section Gilles Orazi (EGM) 11/06/2021

0.6 Cross-border Person
Finder Pilot

Hidenori Nakazato, Kenji Kanai
(WAS)

11/06/2021

0.7 Wildlife Monitoring Pilot Kenichi Nakamura (PAN), Tetsuya
Yokotani (KIT), Hiroaki Mukai
(KIT)

11/06/2021

0.8 FogFlow Contribution Bin Cheng (NEC) 07/07/2021

0.9 FogFlow Contribution Bin Cheng (NEC) 07/07/2021

0.10 Pilot updates Juan Antonio Martinez (OdinS),
Juan Andrés Sánchez (OdinS),
Giuseppe Tropea (CNIT), Gilles
Orazi (EGM), Kenichi Nakamura
(PAN), Tetsuya Yokotani (KIT),
Hiroaki Mukai (KIT), Hidenori
Nakazato (WAS), Kenji Kanai
(WAS)

18/07/2021

1.0 Quality review Giuseppe Tropea (CNIT) 26/07/2021

1.1 Final review Andrea Detti (CNIT) 27/07/2021

Table 3: Version Control Table

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 16 of 109

2 Codebase Management and Integration

VirIoT, the platform we have developed within the Fed4IoT project, comprises different
components or enablers, which allow virtualising IoT information coming from different
data providers. One of the goals is to have users and consumers access this information
in a controlled and secure way, including mediated access to actuators.

Setting up a reliable strategy for quality control of the source code of such a plat-
form, which comes from different partners and, given the capabilities of the platform to
manage isolated containers, is implemented using different programming languages and
programming patterns, is of paramount importance.

Deliverable D2.3 on the System Architecture provides the overall design of the var-
ious interfaces. In this Section of this deliverable we focus, instead, on issues of soft-
ware integration, impacting how we manage code of the Master-Controller, SystemvSilo,
ThingVisors, of the various flavours of vSilos, which are implemented both in Python and
in node.js programming languages, and of the security enablers.

There are different strategies that could have been applied for a seamless codebase
integration of the VirIoT components, ranging from a manual approach where code is
stored in different code repositories, up to more advanced ones where we can also take
advantage of the latest DevOps tools for an automated deployment and continuous inte-
gration.

During the course of the project we refined the management and integration of the
codebases in two steps: first we took advantage of the GitHub portal, coupling it with
Docker technology, for seamlessly integrating code of the different components. Secondly
we focused on Kubernetes technology, in order to demonstrate easy handling and deploy of
our components. We opted for using GitHub because of the familiarity that partners have
with it, as well as the well-known capabilities that it provides as one of the most-known
systems for managing code. Then we started using cloud providers for a coordinated
deployment thanks to the Kubernetes technology. These two phases are explained in the
following subsections.

2.1 GitHub Strategy and Dockerized Components

GitHub is a well-known platform that helps assuring quality when developing services
and applications. Based on git repositories, GitHub is well-known world wide because
of the mechanisms it provides to services and application owners to improve the quality
of their development cycle, by allowing the community of developers to download, test,
and even improve the quality of progressive development, in a controlled manner, thanks
to the concept of pull-request by which they can request changes over the main branch,
which must be verified by the maintainers of the code before being integrated.

This sort of tools is also a very good approach for collaborative development, as it
is the case for the VirIoT platform, which has been developed in a collaborative fashion
among all partners. The advantages offered by this solution make it ideal for distributing
the platform to the public, and collecting feedback from the community.

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 17 of 109

Further, Docker is one of the technologies which has gained a great popularity because
of its ease at configuring the running environment, defining what is going to be inside
the containers, and also speeding up universal execution of the corresponding instances.

For the key components of our platform, we have written and deployed on GitHub,
alongside the component’s code, automated shell scripts that take care of the creation,
building and updating of the corresponding Docker images, as well as pushing them to
DockerHub.

This strategy has allowed us to obtain two important objectives:

� Assuring the quality of our codebase, fostering collaboration among partners and
collaborative code writing.

� Provide an easy deployment cycle of our testbeds; of our open source platform.

� Give the opportunity to external developers to improve and give feedback about
our open source platform, possibly supporting validation of it by the developers’
community.

2.2 Kubernetes Deployment

Kubernetes allows for an orchestrated deployment in remote servers. In a second iteration,
we have progressed by allowing our VirIoT platform to be deployed using this technology.
In the following Sections, we see how we have materialized the VirIoT platform, using
this technology, in two data centres and edge sites in different countries, starting to pave
the ground for a system that can be exploited by the consortium.

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 18 of 109

3 VirIoT Cross-border Platform

The execution of the Fed4IoT pilots is supported by a cross-border deployment of VirIoT
that is composed of Virtual Machines running Kubernetes deployed in Microsoft Azure
data centers and edge sites. This section briefly describes related infrastructure, Kuber-
netes configuration and running VirIoT components (Kubernetes Pods).

3.1 VirIoT Infrastructure

Smart Parking

Text

172.16.5.0/24 172.16.6.0/24

Cross-Border
Person Finder

Wild Animal
Monitoring

Grasse root data
domain

Hakusan root data
domain

Kumamoto root data
domain

Waseda edge cloud
and root data domain

waseda edge

Murcia edge cloud and
root data domain

Europe Virtual Network
West Europe

192.168.0.0/16

Japan Virtual Network
Japan East
10.0.0.0/16

VPN
Gateway

VPN
Gateway

IKEv2 Tunnel

Cross-Border
Person FinderCarpooling

VPN

Murcia edge

VPN
ThingVisor ThingVisor

ThingVisor

vSilo vSilo
vSilo vSilo

ThingVisor

ThingVisor
ThingVisor

Figure 1: VirIoT Infrastructure for Pilots

Four pilot applications: smart parking, carpooling, cross-border person finder, and
wildlife monitoring, are implemented using five root data domains: Murcia, Grasse, Haku-
san, Kumamoto, and Waseda as shown in Figure 11.

Azure services of Microsoft’s Cloud and some on-premise edge devices are used to
implement the VirIoT infrastructure used by the four pilot applications that connects
the five root data domains. About the physical location of the involved devices, we use
4 virtual machines (VMs) in Azure’s West-Europe data center, 2 VMs in Azure’s Japan-
East data center, and two ”edge” VMs located in the OdinS sites in Murcia (Spain) and
Waseda University in Tokyo (Japan), respectively.

The cross-border interconnection among data centers and edge sites, as well as the
relationship between pilot applications and pilot sites is visualized in Figure 1. Within
each Azure data center, VMs are connected to each other by a virtual Ethernet network

1Please note that the pilot application: Citizen Made IoT Applications is supported by the ThingVisor
Factory and is now part of main components of Fed4IoT, to be shared among IoT applications. ThingVi-
sor Factory is described in Deliverable 2.3 “System Architecture - Second Release” and Deliverable 3.2
“Cloud Oriented Services - Second Release.”

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 19 of 109

that uses a unique /24 IP address class within the testbed. For the interconnection of
these virtual networks, we used two Azure VPN gateways, one in EU and one in JP,
which use IPsec/IKE VPN tunneling.

Extending the VirIoT platform to edge sites close to data or users has been im-
plemented by connecting VMs running within edge sites through TLS ”point-to-site”
connections to Azure VPN gateways. For example, the Waseda edge site is made by a
single VM connected with the JP VPN gateway via openVPN technology. Similarly, the
edge site in Murcia has a VM connected to the EU VPN gateway. The EU and JP edge
VMs belong to two different IP subnets (172.16.5.0/24 and 172.16.6.0/24) and the entire
routing plane is controlled by the BGP protocol operating on the Azure VPN gateways.

The virtual machines are used to run ThingVisors, vSilos, as well as application
programs in some of the pilot applications. ThingVisors can also run in the edge nodes.
For example, some ThingVisors for cross-border person finder pilot will run on the edge
nodes to save network bandwidth for image transferring. The vSilos for the smart parking
pilot and carpooling pilot will run on the virtual machines in EU data center. The vSilos
for the wild animal monitoring pilot will run on the virtual machines in JP data center.
The vSilos for the cross-border person finder pilot will run in both data centers in order
to confine person information in each region.

Virtual Machines are also used to run all control/networking service of VirIoT, i.e.
Master Controller, MQTT and HTTP distribution systems, System Database, etc.

3.2 VirIoT Kubernetes services

In this section we explain the Kubernetes configuration for this testbed. Since we are
leveraging Azure resources, they provide its customers with two main options for deploy-
ing a Kubernetes cluster:

� fully managed, ready-to-use Kubernetes service by Azure: Azure Kubernetes Ser-
vice (AKS);

� configure your own Kubernetes cluster with resources provided by Azure (on-premise).

We have decided to go with the second options for different reasons: first of all, using
Kubernetes as AKS means the cloud provider is hiding all the complexity from the user.
Running it as an on-prem bare metal deployment, means you’re on your own for managing
these complexities – including persistent storage, load balancing, configmaps, services,
availability, auto-scaling, networking, roll-back on faulty deployments, and more. This is
translated into higher complexity, but indeed better understating of all the components
running on the cluster, giving the ability to fine tune the requirements of the platform
for all the contributors of the project.

Now we will dive into the main characteristics of the cluster. We have set up the
Kubernetes cluster across all the available VMs in this manner: one machine is used as
a Kubernetes master node and is located inside the Azure EU data center, while all the
remaining ones, three in Europe, two in the Japan region, and other in edge sites are
suited for being working nodes.

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 20 of 109

VerneMQ

(MQTT)

Node

ThingVisor

viriot-gw = Y.Y.Y.Y

 viriot-zone = japan

viriot-gw = Y.Y.Y.Y

vSilo

Node

NGINX

(HTTP proxy)

Japan Data Center

viriot-zone-gw = true viriot-zone-gw = false

 viriot-zone = japan

Master Node

Node

vSilo

ThingVsor

Node

Europe Data Center

ThingVsor

Node

Master Controller

MongoDB

Node

VerneMQ

(MQTT)

NGINX

(HTTP proxy)

viriot-gw = X.X.X.X

viriot-zone-gw = true

 viriot-zone = eu

viriot-gw = X.X.X.X

viriot-zone-gw = false

 viriot-zone = eu

viriot-gw = X.X.X.X

viriot-zone-gw = false

 viriot-zone = eu

VerneMQ

(MQTT)

Node

ThingVisor

viriot-gw = Z.Z.Z.Z

vSilo

NGINX

(HTTP proxy)

Edge Node

viriot-zone-gw = true

 viriot-zone = waseda

Figure 2: VirIoT main components on Kubernetes

To support edge computing functionality, we have exploited Kubernetes labels. Ku-
bernetes labels enable users to map their own organizational structures onto system
objects in a loosely coupled fashion, without requiring clients to store these mappings.
By using labels on nodes, it is possible to constrain the running of a pod/container to
specific nodes that matches the exact label value (node-affinity) or, on the contrary, that
pod should avoid being allocated on a particular nodes with a different label (pod-anti-
affinity). We are leveraging the aforementioned node-affinity to consider a Kubernetes
distributed cluster formed by zones that are data centers and/or edge sites. Nodes of
a zone must be labelled with “viriot-zone” and “viriot-gw” labels, as follows: the value
of the “viriot-gw” key must contain a public IP address through which it is possible to
access the data center or the edge node; the value of the “viriot-zone” is a unique name
that identifies the zone. We have depicted our high-level cluster view in Figure 2, as
we can see, we have used the “viriot-zone” and “viriot-gw” labels to differentiate nodes
where to deploy VirIoT services.

As mentioned in D3.2, VirIoT platform needs some necessary elements:

� the Master-Controller

� the SystemDB

� the MQTT distribution system for context data and control messages

� the HTTP distribution system for large content (and more)

Master-Controller and SystemDB run in the Azure’s EU data center. The MQTT distri-
bution system is made by a cluster of MQTT Brokers and we used VerneMQ software.
The HTTP distribution system is made by a cluster of HTTP proxies and we used NG-
INX software. A single instance of a MQTT Broker and a HTTP proxy must run per
data center / edge node and the selected node is the one of the zone that has the label
“viriot-zone-gw=true”. In this way we created a topology based data distribution tree
and optimized the data transfer between data centers / edge nodes, i.e. viriot-zones.

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 21 of 109

3.3 VirIoT Deployment Guideline

VirIoT is a microservice architecture therefore its services can be deployed in any node
of the cluster. As deployment guidelines we recommend what follows:

� Master-Controller and System Database are the most critical services in the VirIoT
control plane, so they should be deployed in a high reliability node. Interactions
with them occur only during ThingVisors and vSilos configuration, network traffic
is low, and network latency is not critical for performance.

� HTTP proxies and MQTT brokers are the services of a zone that interconnect the
zone with other zones. Should be deployed in the highest reliable node of the zone.

� ThingVisors can process data from real sensors and/or activate real actuators. The
vSilos send and receive data from tenant applications connected to them. Con-
sequently, it is convenient to deploy ThingVisors in VirIoT zones near the real
things they interact with and vSilos in VirIoT zones near the user applications they
interact with. This reduces network traffic and latency.

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 22 of 109

4 Smart Parking Pilot

4.1 Description of the pilot

The Smart Parking pilot tries to deal with one of the most common issues of big cities,
traffic congestion. One of the main causes which contributes to this problem is the number
of vehicles wandering along the city, searching for a parking spot in a certain destination
area. Smart Parking provides a solution that allows them to reduce the amount of time
for this activity.

In this Smart Parking use case, the pilot is focused in Murcia, which is a city located
in the south-east of Spain, and with a population of 450.000 citizens. This city has
experienced a dramatic rise of accesses to the city centre in the last years, which provoke
a considerable increase in traffic congestion. Day-by-day, commuters, tourists and families
traveling by car collapse the city centre with cars intending to park at commerce, financial
and historical areas.

The aim of this Smart Parking use case is taking advantage of Fed4IoT framework to
provide a service that tracks the state of the parking spots, to provide the drivers with
this information beforehand and, as a consequence, to get more fluid traffic in the centre
of the city.

4.2 Description of the components to be instantiated

4.2.1 Root Data Domain

The Smart Parking solution provided by our Fed4IoT framework integrates the informa-
tion coming from the FIWARE-based Mi-Murcia platform. Figure 3 presents the most
relevant components of the envisioned platform according to this concrete use case.

Our Smart Parking use case receives two types of context sources:

� The availability of private parking sites in terms of unoccupied parking spots.

� The probability to be able to park in the Regulated Parking Zone (RPZ). obtained
via a (Machine Learning) model, trained based on the logged history of daily ex-
pended tickets.

For the case of the parking sites, the sensors, deployed in each private parking site,
send the number of actual unoccupied parking spots when a vehicle enters or exits from
the parking site. Usually, an IoT gateway is required to transmit this information to an
IoT platform too.

For the case of RPZ, since in Murcia city we count with old-fashion parking meters
equipped with highly-constrained CPU, during the day they are completely dedicated to
the ticket issuance task. These devices take advantage of the night time to perform the
transmission of the activity of the whole day, providing detailed information regarding
the expended tickets.

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 23 of 109

Figure 3: Smart Parking architecture

4.2.2 VirIoT Data Domain

Here we describe all components we need to instantiate in the VirIoT platform in order
to have an operational Smart Parking pilot. These components are:

� Parking Site ThingVisor, which obtains the parking sites information coming
from the FIWARE-based Mi-Murcia platform.

� Regulated Parking Zone (RPZ) ThingVisor, which obtains the RPZ informa-
tion coming from the FIWARE-based Mi-Murcia platform.

� Virtual Silo (orion-flavour), which receives the parking sites and RPZ infor-
mation from the above ThingVisors and offers it to the Smart Parking pilot GUI.

Figure 4 shows the interactions between specific components of Smart Parking in
VirIoT.

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 24 of 109

Figure 4: Smart Parking interactions VirIoT components

4.2.2.1 Parking Site ThingVisor

This ThingVisor component obtains parking sites information from the FIWARE-based
Mi-Murcia platform. To do this, it subscribes to the entities of the platform which
contain this specific information. So, when ThingVisor receives the notifications from
the platform (NGSIv2 format), it processes its payload and produces a neutral format
payload (NGSI-LD) which is sent to MQTT broker in a specific vThing topic.

Once the ThingVisor sends the NGSI-LD payload, the vSilos that are subscribed to
the corresponding vThings will receive the information. Figure 5 shows this functionality
by depicting the interactions commented above.

Figure 5: Parking Site functionality

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 25 of 109

4.2.2.2 Regulated Parking Zone (RPZ) ThingVisor

The functionality of this ThingVisor is the same as indicated in the previous Parking

Site ThingVisor. The unique difference is that this ThingVisor subscribes to the
FIWARE-based Mi-Murcia platform to obtain specific Regulated Parking Zones infor-
mation as presented in Figure 6.

Figure 6: Regulated Parking Zone functionality

4.2.2.3 Virtual Silo

The vSilo component receives Neutral-Format data (NGSI-LD) through the platform’s
MQTT broker it is connected to. It receives whatever NGSI-LD payload was previously
published by the ThingVisors to the platform’s MQTT broker.

This component has a vSilo Controller which processes the Neutral-Format data and
converts it to NGSIv2 data, which is stored in an Orion Context Broker, embedded in
the vSilo, by issuing a request to the NGSIv2 API. This way, the vSilo offers to Smart
Parking an NGSIv2 API to access its data, i.e., the information of parking sites and RPZ.
To access data, NGSIv2 offers two options, either using the entity queries or through the
subscription mechanism.

Figure 7 summarizes the functionality of this vSilo.

4.2.3 Tenant Data Domain

This solution will provide a GUI, as depicted in Figure 8, allowing the user to specify both
the current location and the destination, as well as parking duration, the time when she
will arrive and other user preferences (maximum desired cost, maximum desired distance
from parking to destination, ...) by presenting a map-based web interface/App. Once
the selection is made, our Smart Parking solution makes a complex reasoning to generate
an informed recommendation about the best destination area where to park the vehicle.

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 26 of 109

Figure 7: Virtual Silo (orion-flavour) functionality

4.3 Deployment strategy

This subsection details how the components of the Smart Parking pilot that were men-
tioned and detailed in previous Section 4.2 will be integrated into the VirIoT platform.

On the one hand, Smart parking ThingVisors and vSilo will be deployed in the edge
node of EU by the Master-Controller. There are two methods to deploy components
through the Master-Controller:

� using the Command Line Interface (VirIoT/CLI)

� using Master-Controller’s API

Once ThingVisors are deployed, notifications received from the FIWARE-based Mi-
Murcia platform are processed and sent to the vSilo, which then is able to offer the data
through its NGSIv2 API of its local Orion Context Broker.

On the other hand, the Smart Parking pilot application will be deployed in a chosen
environment (cloud or local one) and can obtain Smart Parking information by requesting
the corresponding information directly to the vSilo Broker via the standard NGSIv2
API. This instance of the VirIoT platform is presented in Figure 9 where the specific
deployment strategy is presented.

4.3.1 Deploying VirIoT components

As introduced in 4.3, there are two methods to deploy components through the Master-
Controller. This section details how to deploy, in the EU node (default zone), the required
ThingVisors and vSilo required by Smart Parking use case using both methods. We have
assumed that the Master-Controller is already running in the VirIoT platform.

If we opt to use the VirIoT/CLI way, by default, the commands exposed are launched
in the same environment (machine) of Master-Controller using therefore its loopback

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 27 of 109

Figure 8: Smart Parking map-based GUI

interface for accessing its services e.g. using the URL http://127.0.0.1:8090. Anyway,
we can run these commands from a remote machine replacing the URL with the public
address where the VirIoT platform is running.

On the other hand, in case we are using the Master-Controller’s API, by default,
the exposed commands are launched from a remote machine and, in this sense, a public
address is required. In this section, YAML files are used for deploying process and, in case
using Master-Controller’s API, PublicAddressMC corresponds with its public address.

Before try to deploy any component, first we need to login in Master-Controller. To see
more details about the Login process review D3.2 section 2.1.3 Login. After performing
this task, an access token is received which is required for subsequent requests when using
the Master Controller’s API.

Starting the deployment process, the following boxes show how to deploy Parking Site
ThingVisor:

Using VirIoT/CLI - Parking Site ThingVisor

python3 f4i.py add-thingvisor -c http://127.0.0.1:8090 -n thingvisorid-

parkingsite -p "{'ocb_ip':'fiware-dev.inf.um.es', 'ocb_port':'1026'}"

-d "thingvisorid-parkingsite" -y "../yaml/thingVisor-murcia-

parkingsite.yaml" -z default

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 28 of 109

Figure 9: Deployment strategy for Smart Parking pilot

Using Master-Controller’s API - Parking Site ThingVisor
POST http://{PublicAddressMC}/addThingVisor

{

"thingVisorID": "thingvisorid-parkingsite",

"params": "{\"ocb_ip\":\"fiware-dev.inf.um.es\", \"ocb_port

\":\"1026\"}",

"description": "thingvisorid-parkingsite",

"yamlFiles": "../yaml/thingVisor-murcia-parkingsite.yaml",

"tvZone": "default"

}

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 29 of 109

HEADERS:

Content-Type: application/json
Accept: application/json

Authorization: Bearer {{token}}

The following boxes show how to deploy Regulated Parking Zones ThingVisor:

Using VirIoT/CLI - Regulated Parking Zones ThingVisor

python3 f4i.py add-thingvisor -c http://127.0.0.1:8090 -n thingvisorid-

rpz -p "{'ocb_ip':'fiware-dev.inf.um.es', 'ocb_port':'1026'}" -d "

thingvisorid-rpz" -y "../yaml/thingVisor-murcia-rpz.yaml" -z default

Using Master-Controller’s API - Regulated Parking Zones ThingVisor
POST http://{PublicAddressMC}/addThingVisor

{

"thingVisorID": "thingvisorid-rpz",

"params": "{\"ocb_ip\":\"fiware-dev.inf.um.es\", \"ocb_port

\":\"1026\"}",

"description": "thingvisorid-rpz",

"yamlFiles": "../yaml/thingVisor-murcia-rpz.yaml",

"tvZone": "default"

}

HEADERS:

Content-Type: application/json
Accept: application/json

Authorization: Bearer {{token}}

Before deploying the Virtual Silo, the orion-flavour must be added:

Using VirIoT/CLI - Add orion-flavour

python3 f4i.py add-flavour -c http://127.0.0.1:8090 -f orion-f -s "" -d "

silo with a FIWARE Orion broker" -y "../yaml/flavours-orion.yaml" -d

"silo with a FIWARE Orion Context Broker"

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 30 of 109

Using Master-Controller’s API - Add orion-flavour
POST http://{PublicAddressMC}/addFlavour

{

"flavourID": "orion-f",

"flavourParams": "",

"flavourDescription": "silo with a FIWARE Orion broker",

"yamlFiles": "../yaml/flavours-orion.yaml"

}

HEADERS:

Content-Type: application/json
Accept: application/json

Authorization: Bearer {{token}}

Once orion-flavour is added, it is the turn for deploying Virtual Silo:

Using VirIoT/CLI - Virtual Silo (orion-flavour)

python3 f4i.py create-vsilo -c http://127.0.0.1:8090 -f orion-f -t smart

-s parking -z default

Using Master-Controller’s API - Virtual Silo (orion-flavour)
POST http://{PublicAddressMC}/siloCreate

{

"flavourID":"orion-f",

"tenantID":"smart",

"vSiloName":"parking",

"vSiloZone": "default"

}

HEADERS:

Content-Type: application/json
Accept: application/json

Authorization: Bearer {{token}}

The following boxes show how to include data from Smart Parking ThingVisors. These
ThingVisors, as mentioned in section 4.2.2.1 and section 4.2.2.2, obtain information from

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 31 of 109

the FIWARE-based Mi-Murcia platform related to Smart Parking use case. Section 4.4
shows an overview of the kind of entities obtained from them.

Using VirIoT/CLI - Add vThings to Virtual Silo

python3 f4i.py add-vthing -c http://127.0.0.1:8090 -v thingvisorid-

parkingsite/parkingsite -t smart -s parking;

python3 f4i.py add-vthing -c http://127.0.0.1:8090 -v thingvisorid-

parkingsite/policy -t smart -s parking;

python3 f4i.py add-vthing -c http://127.0.0.1:8090 -v thingvisorid-rpz/

parkingmeter -t smart -s parking;

python3 f4i.py add-vthing -c http://127.0.0.1:8090 -v thingvisorid-rpz/

policy -t smart -s parking;

python3 f4i.py add-vthing -c http://127.0.0.1:8090 -v thingvisorid-rpz/

sector -t smart -s parking;

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 32 of 109

Using Master-Controller’s API - Add vThings to Virtual Silo
POST http://{PublicAddressMC}/addVThing

Body request to add parking sites...

{

"tenantID":"smart",

"vThingID":"thingvisorid-parkingsite/parkingsite",

"vSiloName":"parking"

}

Body request to add parking site policies...

{

"tenantID":"smart",

"vThingID":"thingvisorid-parkingsite/policy",

"vSiloName":"parking"

}

Body request to add parking meters...

{

"tenantID":"smart",

"vThingID":"thingvisorid-rpz/parkingmeter",

"vSiloName":"parking"

}

Body request to add parking meter policies...

{

"tenantID":"smart",

"vThingID":"thingvisorid-rpz/policy",

"vSiloName":"parking"

}

Body request to add parking meter sectors...

{

"tenantID":"smart",

"vThingID":"thingvisorid-rpz/sector",

"vSiloName":"parking"

}

HEADERS:

Content-Type: application/json
Accept: application/json

Authorization: Bearer {{token}}

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 33 of 109

Figure 10: Smart Parking Pilot components interactions

4.3.2 Deploying Pilot application

As introduced in 4.3, the Smart Parking pilot application can be deployed in a chosen
environment. The pre-requisites of this environment are docker and docker-compose
working installations, since they are needed to deploy it.

Towards this goal, a docker-compose.yml file is available describing where the next
components will be deployed:

� frontend, backend and mongodb: Main components of Smart Parking application.
They offer the GUI, services and database to store the configuration.

� controller: Auxiliar component. This component is responsible for connecting to
the Virtual Silo (orion-flavour) of Smart Parking’s use case, in other words, when
the user requires a parking spot recommendation, this component sends the corre-
sponding geolocation request to the Virtual Silo to obtain parking place candidates
and finally responds to the backend component with the parking’s recommendation.

� osrm-backend: Auxiliar component. High performance routing engine written in
C++14 designed to run on OpenStreetMap data. Used by the frontend component
to show the route to follow from the current/origin location to the recommended
parking spot.

Figure 10 shows Smart Parking pilot components interactions.

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 34 of 109

Although no further configuration is required in the docker-compose file, it is recom-
mended to review the following environment variables of the controller component, so
that they point out to the endpoint of Orion Context Broker (NGSIv2) of the vSilo:

� pep_proxy_protocol, pep_proxy_host and pep_proxy_port: Needed to obtain
entities with contain a location attribute and can be filtered by it. In this sense, it
considers the parking site and parking meter entity types.

� ngsiv2_protocol, ngsiv2_host, ngsiv2_port: Needed to obtain entities with
contain a location attribute and can be filtered. In this sense, it considers the
parking site and parking meter entity types.

Before deploying using docker-compose, a previous step is required in order to config-
ure the osrm-backend container that will be deployed. Please launch the get_OSRM_files.sh
script using the command line, being sure to launch when you are in the same folder of
this file. The outcome of this script is a data folder creation that will be passed to
osrm-backend container.

The next box shows the contents of the get_OSRM_files.sh file:

get OSRM files.sh

mkdir ./data

curl http://download.geofabrik.de/europe/spain-latest.osm.pbf -o ./data/

spain-latest.osm.pbf

docker run --rm -t -v "${PWD}/data:/data" osrm/osrm-backend osrm-extract

-p /opt/car.lua /data/spain-latest.osm.pbf

docker run --rm -t -v "${PWD}/data:/data" osrm/osrm-backend osrm-

partition /data/spain-latest.osm

docker run --rm -t -v "${PWD}/data:/data" osrm/osrm-backend osrm-

customize /data/spain-latest.osm

Finally, to deploy Smart Parking pilot application launch:

deploy Smart Parking pilot

docker-compose build;

docker-compose up -d;

Once every Smart Parking containers is running, the GUI is accessible at http:

//localhost:81/login using a web browser. Now, the functionality defined in section
4.2.3 is available.

4.3.3 Edge-based Deployment with FogFlow

In this advanced scenario we use FogFlow as the underlying ThingVisor factory to in-
stantiate the Virtual Things required by the smart parking use case at the edge. This

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 35 of 109

http://localhost:81/login
http://localhost:81/login

Figure 11: FogFlow-based deployment for smart parking

alternative implementation based on FogFlow can demonstrate the following benefit of
creating and managing Virtual Things at the edge: 1) reducing the bandwidth consump-
tion between physical devices and vSilos; 2) enabling and managing the direct commu-
nication between Virtual Things fully at the edge for fast response time; 3) reducing the
concern on data privacy; 4) realizing various thing visors based on the same programming
model in FogFlow.

Based on the intent-based programming model in FogFlow and its application tem-
plate, we have realized three types of ThingVisors: 1) Private Parking Site, which presents
the parking site managed by private companies; 2) Public Parking Site, which represents
the regulated parking zones managed by the Murcia city government; 3) Car, which is
to simulate a connected car used by a citizen. Each of these three ThingVisors is pro-
grammed as a FogFlow application, which defines the common logic of how to create
and manage multiple instances of Virtual Things with the same type. Therefore, as
an advanced ThingVisor factory, FogFlow can, not only simplify the programming of
ThingVisors via the same programming model, but also ease and automate the manage-
ment of Virtual Things associated with the same type of ThingVisor.

Figure 11 shows the deployment view of the FogFlow-based smart parking use case.
The entire FogFlow consists of a centralized FogFlow cloud node and a set of FogFlow
edge nodes, each of which is deployed locally at a private parking site. Three ThingVisor
applications are registered to the FogFlow system via its web-based dashboard. After
that, those ThingVisor applications can be enabled or disabled, either by FogFlow system
operator via FogFlow dashboard or by VirIoT system operator via the implemented
FogFlow-ThingVisor, which is a special VirIoT ThingVisor managed by the VirIoT master
as a proxy to communicate with the FogFlow system, including fetching the information
of Virtual Things from FogFlow and then making it available to vSilo via the VirIoT
data broker.

Figure 12 shows the screenshot of this demo. We simulate a connected car and a
number of parking sites, including both regulated parking sites and private parking sites.

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 36 of 109

Figure 12: Demonstration of FogFlow-based Smart Parking

Each parking site is associated with a virtual thing, created by either Public Parking Site
ThingVisor or Private Parking Site ThingVisor. Once the connected car joins the system
from a nearby FogFlow edge, a virtual thing for the car will be created as well. The
virtual of this connected car will communicate with the Virtual Things of the parking
sites in the destination area and search for a parking site with free parking lots around
the arrival time. The driver of the connected car will be informed with the recommended
parking site.

4.4 Data Model

Data model used for Smart Parking is not updated from deliverable D5.2.

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 37 of 109

5 Carpooling Pilot

5.1 Description of the pilot

The idea behind this pilot is to use a camera associated with some deep learning machine
vision algorithm to perform the monitoring of a given site, and to send events as they
occur on the field. Our aim is to apply this scheme to the detection entries and exits of
the cars in a carpooling parking to compute some statistics about its usage.

Carpooling parkings are created by local governments to encourage people to gather
in a single car to drive in a common place. This is often used to commute. When they
create such spaces, the authorities need to have an impact measurement, but this is
difficult because the stay is free and there is thus no barrier which delivers tickets at the
entrance.

In this pilot, the smart camera monitors the entrance and exit of each car and use
its license plate number to uniquely identify it, so it is possible to compute statistics and
monitor the usages of the parking. How many cars park in them each day? What is the
average parking time? Which kind of cars are using it? Could we infer from ”in and out”
events how much CO2 emissions are avoided by the carpoolers using this parking?

The camera sends anonymized detection events (not images) to the VirIoT infras-
tructure so the application dashboard can be updated in near real time while preserving
private data of the parking users.

Figure 13: Example of entrance and exit images from a carpooling parking

5.1.1 Deployment Site

The deployment site is located in France, near the town of Perpignan, in a carpooling
parking situated close to the highway. Its entrance and exit can be monitored using a
single camera (see Figure 14).

The chosen hardware, to be deployed on site, is built around a Jetson Nano computer.
This is a low power, small form factor computer for embedded edge computing built by
Nvidia. It runs a quad-core CPU associated with a 472 GFlops GPU that is able to run
deep learning algorithm, its maximum power consumption running at full GPU capacity
is around 10W. However, this might be an issue especially during the summer and some
software mitigation strategies are needed to avoid overheating.

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 38 of 109

Figure 14: Site where the deployment of the carpooling parking use case is deployed. The
camera is located on a mat at 4.5m height on the black spot. From this point of view it
is possible to see incoming and outgoing vehicles with a single camera.

The camera has a 4MP sensor with IR illumination for night vision up to 50m. It
also provide an optical zoom and pan/tilt abilities to tune the framing of the image. The
whole system is powered by a 24V battery, 100m away, charged by the current taken from
the lighting system of the highway during the night.

5.2 Description of the components to be instantiated

5.2.1 Root Data Domain

On the edge side, the software architecture is as depicted in Figure 15. The camera is
providing an RTSP video stream which is passed through the processing pipeline with
the following steps: motion detection, license plate detection, license plate reader and an
event generator.

The motion detection is first used to get a rough selection of images that may contain
interesting events. This is done using a motion detector based on classic computer vision

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 39 of 109

Figure 15: Edge software architecture

algorithms to produce a frame by frame estimate of the foreground characteristics (like
number of pixels of the foreground, number and sizes of pixel clusters, ...). A simple
machine learning model was trained to use them to determine if the frame may contain an
event of interest. This relatively light processing step is implemented to avoid processing
capabilities saturation by overfeeding the rest of the processing pipeline. This also helps
a lot to lower the CPU/GPU temperature, which is an issue in this deployment since the
Jetson Nano stands in a box on which the sun can hit very hard especially during the
summer.

Then, a license plate detection step is done. It runs a Yolo-lite model trained using a
transfer learning technique with some images taken from this deployment. This provides
1/ another filter for signal over noise reduction and 2/ the coordinates of the license plates
seen in the image.

The result of this processing, as well as the whole raw frame is then passed to the
license plate reader step which outputs the list of license plates in the image. If this list
is not empty, the result is processed by the event generator that send the events via an
MQTT bridge, connected to the MQTT broker of the root data domain infrastructure.
The MQTT bridge is used to mitigate connectivity loss as it uses QOS of 1.This means
that is the network connectivity is lost for a while, the events are stored in the local
MQTT broker until it is restored. Then, the cached events are sent normally to the cloud
and no one is lost.

The system has been deployed on the parking on 9th September of 2020. We faced
various field-related issues like camera tuning (especially during the night), CPU/GPU
overheating or even a spider web moving in the wind triggering fake motion detection.

Once the Edge processing is done, the message is received on a virtual computer in
the cloud that does the following pre-processings: query a license plate public database to
get some data of interest concerning the car (as vehicle type, engine type, CO2 emissions)

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 40 of 109

Figure 16: Software modules of the carpooling pilot, blue show the root data domain,
green the VirIoT data domain and yellow the tenant one.

and then immediately pseudonymize the license plate number using a hash algorithm.
The license plate is no more used nor stored in the following processes, ensuring users
privacy.

5.2.2 VirIoT Data Domain

In order to have an operational carpooling pilot, the following VirIoT components must
be instantiated:

� The car detector thingVisor, with one vThing per camera configured. It receives
the entrance and exit events and some car characteristics from the root data domain
services.

� One Virtual Silo (stellio-flavor), wich receives events and car data and provide them
to the application.

We first thought that the event data will be transmitted using a LoRaWAN network,
we thus implemented a LoRaWAN thingVisor, connected to the MQTT broker of the

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 41 of 109

LoRa Chirpstack network server. This ThingVisor helps to connect incoming small pieces
of data to their full NGSI-LD context. But it turns out that the LoRa network is not
well suited to our needs, in particular it does not have enough bandwidth to send all the
license plate detection events. We then switched to 4G connectivity, pushing data to the
same MQTT broker as the one used by the LoRa server, using a compatible message
format. This allows our LoRaWAN ThingVisor to be used for the integration of this
smart camera setup into the Fed4IoT VirIoT platform.

The entry/exit event detection for a given car park is linked to a vThing in the virtual
data domain. These vThings are managed by a single thingVisor, attached to a given
root data domain. These vThings are notified of events by the root data domain services
and provide the NGSI-LD context described by the use case data model (see 5.4) to the
VirIoT MQTT broker.

The vSilo is registered to receive these events and the car data in the platform-neutral
format. These data are directly sent to the Stellio broker which natively handles this
format.

5.2.3 Tenant Data Domain

The tenant data domain is handled by an instance of the Stellio NGSI-LD broker, con-
nected by a specialized vSilo. It first stores the entry and exit events in the same NGSI-LD
format as the one shown before. It also runs specialized algorithms to associate entry
and exit events to detect the passing of the cars in the parking and then compute the
duration of each of them. These algorithms are implemented using various NGSI-LD
queries through the NGSI-LD API implemented by Stellio.

The application dashboard is implemented using Grafana. To access the data, a
specialized data source plugin was implemented. First, the NGSI-LD queries were directly
called from within this plugin. But to build a dynamic dashboard, the number of queries
and the size of the returned data made it very slow to refresh. We then decided to pre-
process the dashboard data and store them in an intermediate MongoDB database. A
dashboard data synchronization process is continuously running to update this database.

5.3 Deployment strategy

All the software components described for this use case are represented in the figure 16.
The deployment of the carpooling pilot goes through the following steps:

� Hardware installation on site;

� Cloud services in the root data domain;

� Configure and start the ThingVisor to connect the root data domain to VirIoT;

� Start the Stellio-flavor vSilo;

� Start the Stellio instance and the carpooling application components : in/out associ-
ation, dashboard database synchronization, Grafana and the carpooling datasource.

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 42 of 109

Figure 17: The carpool dashboard

5.3.1 Root data domain deployment

On the monitored sites the cameras and the edge processing capabilities are installed on
the top of a mat. They are powered by a power management system delivering 5V for the
Jetson Nano and 12V for the camera. The camera is configured with a fixed IP address
and plugged to the ethernet port of the Jetson Nano. This latter device is connected to a
4G network with a USB stick. The internal MQTT bridge is connected to the root data
domain MQTT broker. The various services on the Jetson Nano are managed using PM2
which is configured to launch them at startup. It also has a re-launch strategy to handle
the potential software crashes.

On the root data domain, the cloud services are all hosted on a VM and managed
with PM2. A first service listens to the MQTT messages coming from the edge. Once

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 43 of 109

the data are processed by the various services they are published on a specific topic of the
same MQTT broker so they are available through subscription for the VirIoT thingVisors.
These root data domain services provide:

� query the license plate database API and add the related data to the output message

� an anonymizer that computes a hash for the license plate

So, two types of messages are sent by the root data domain services:

� in/out events, containing the anonymized license plate and timestamp

� car data from license plate DB, containing the anonymized license plate and the
relevant data (fuel type, CO2 emissions, ...)

5.3.2 VirIoT data domain deployment

There is one vThing instance for each smart camera installed on the field, deployed on
the VirIoT cross-border platform, EU site. It is connected to the Root Data Domain
MQTT broker, listening to messages transformed by the micro services described in the
previous section.

To start the thingVisor, it is needed to provide:

� the MQTT broker address and port;

� the authentication informations on the MQTT broker;

� the base of the MQTT topics

� the list of cameras to be connected.

The thingVisor will create a vThing for each camera, each of these will be subscribed to
the topic build from the base and the identifier of the camera.

Eventually, a vSilo embedding a Stellio NGSI-LD broker is instantiated in the VirIoT
cross-border platform, EU site.

5.3.3 Tenant data domain deployment

The tenant data domain processes are all deployed on a specific VM. They are managed
using PM2.

A first process queries at a regular pace the Stellio broker to try to associate new out
events with a in event which occurred before. These queries involve multiple criteria and
are done using the NGSI-LD specifications. This process thus only needs to connect to
the Stellio broker of the vSilo. This information is given in the configuration file.

A second process synchronizes regularly the list of associated in/out events in a local
database (for performance). The configuration of this process takes thus the connection
information for the Stellio broker and also for the local data base.

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 44 of 109

A third one is a data source for Grafana, it is only connected to the local database.
It is reachable by Grafana by the HTTP protocol and thus embeds a web server.

The GUI application is based on Grafana, it provides dashboards for the monitored
sites (see 5.2.3). It is only connected to the data source described in the previous para-
graph.

5.4 Data Model

Despite we have already provided a first version of the data model in D5.1, we have
updated it as we are developing this pilot. So, we have taken the opportunity to bring
all the new updates to this document. They can be found in the Annex at the end of
this document.

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 45 of 109

6 Cross-border Person Finder Pilot

6.1 Description of the pilot

The Cross-border Person Finder (CBPF hereinafter) pilot is one possible application to
demonstrate inter-operable capability of Fed4IoT’s VirIoT platform. The pilot aims at
virtually sharing the core functionality of CBPF application among surveillance cameras
installed in multiple cities, and then at performing complex image processing at the edge,
by complying to the requirements of data protection regulations, such as GDPR, avoiding
to move personal data to the centralized cloud if not necessary.

Currently, according to the white paper on tourism in Japan [1], the number of in-
ternational tourists is rapidly increasing, and tourism industry is grown remarkably. Ac-
cording to the white paper, the number of international visitors to Japan by air or sea is
approximately 28.69 million in 2018, and this number is the second rank in Asia. As well
as increasing of inbound tourists, outbound tourists (i.e., Japanese overseas travelers) are
also increasing, and the numbers of them approximately 19 million in 2018. Those who
inbound and outbound tourists tend to be elderly people or youth and not always able
to speak local languages fluently. Therefore, their families are often worried about their
safety, and demand for smart applications that can notify the tourist safety and monitor
the tourist traces.

Based on the above background, the CBPF pilot provides an application able to notify
the geographic location entered by a person, when authorized users, such as police officers,
city hall staff and families, issue a request to try to locate the person. A conceptual
representation of the CBPF pilot is shown in Figure 18. The CBPF application attempts
to find the requested person from video feeds coming from surveillance cameras installed
in multiple cities (e.g., EU and JP smart cities). In the pilot, in order to comply to the
requirement of GDPR, the images captured by the surveillance cameras do not travel
among cross-border countries (EU and JP). Thus, image processing is performed in edge
devices (possibly in-camera) at EU or JP sites, and the geographic location information
is extracted from the processed data.

In order to promote CBPF services, there are two security aspects we should consider.
The first aspect is user consent when the CBPF application initiates service for a specific
person, in order to ensure that the person agrees to provide information which is later
necessary for the CBPF to operate (e.g., portrait of the person to be found). The second
aspect is verification of essential workers providing CBPF services. It can be achieved
with identity verification and attribute verification in case anonymity of workers is re-
quired. It should be noted that the verification of essential workers can be used for other
applications (e.g., COVID-19) to verify essential workers such as doctors and essential
service employees (e.g., grocery store, and pharmacy). Based on the user consent and the
identity/attribute verification, CBPF application authorizes user to provide or receive
information necessary for carrying-out the CBPF service.

In the pilot, we give a typical use case of CBPF application as a tourist monitoring tool
for personal safety. However, the core functionalities of CBPF are to detect (and track)

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 46 of 109

requested persons and ensure security. Thus, we expect that the CBPF application,
including individual components of the CBPF, can be adopted to various application
demands, such as tracking traces of criminal persons and tracking virus infected persons
(e.g., COVID-19).

Figure 18: Concept image of Cross Border Person Finder pilot

6.2 Pilot Assumption

The CBPF pilots uses face matching technology to find a person. Recent face match-
ing technologies uses Artificial Intelligence technology (i.e., deep learning) and therefore
EU Artificial Intelligence Act announced on 21st of April, 2021 should be considered.
As written in ”LAYING DOWN HARMONISED RULES ON ARTIFICIAL INTELLI-
GENCE (ARTIFICIAL INTELLIGENCE ACT) AND AMENDING CERTAIN UNION
LEGISLATIVE ACTS” (19), the use of biometric matching by law enforcement is prohib-
ited, but exceptions are described that the use is strictly necessary to achieve a substantial
public interest, the importance of which outweighs the risks. This pilot aims to find a
missing person which is the search for potential victims of crime, and also may be certain
threats to the life or physical safety of natural persons.

From GDPR point of view, the following aspects are taken into account for the oper-
ation of the CPBF application.

� The owner of camera system authorizes the access from ThingVisor according to
the service request from authorized user

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 47 of 109

� The authorized user is able to retrieve a face image if face matching result shows a
certain level of score (likely the same person)

� The authorization of the user is based on attribute authentication (e.g. police
officer) and therefore anonymous

� The user attributes and opt-in information (the owner of camera system authorized
an access form the user) are managed by DLT (Distributed Ledger Technology) and
each smart city has their own DLT node

� The user attributes and opt-in information are randomized and handled as a short-
life token

� The data elements of short-life token are stored in DLT node as a record and record
ID is used instead of user identifier to avoid a tracing

� The record is not always shared by all DLT nodes and the user can share the record
with necessary smart city DLT nodes only

� The authentication response for user attributes and opt-in information is Boolean
(ZKP:Zero Knowledge Proof approach)

� The record can be deleted from DLT node upon request

Thus, the CPBF application protects the privacy of both application user and sub-
jects.

6.3 Description of the components to be instantiated

In this Section we describe the components, with a focus on a solution for the attribute-
based authentication system.

6.3.1 ThingVisor Variations

First, we describe a design strategy for Cross-Border Person Finder (CBPF) ThingVisors.
CBPF ThingVisors should be carefully designed by considering the GDPR requirements;
Images or videos cannot be exchanged among EU clouds and JP clouds without user
consent. Thus, in the pilot, we aim at having a privacy-preserving ThingVisor for de-
tecting a specific person’s face and some attributes corresponding to the person. This
specific ThingVisor produces such context information as a Virtual Thing by converting
the information to the NGSI-LD neutral-format.

To realize this, the CBPF ThingVisors require mainly four capabilities, namely face
detection, feature extraction, feature matching and interaction with an authentication
system. The design strategy of CBPF ThingVisor is concerned about which capabilities
are deployed where. For example, are all services offered by a camera device (or a camera
system) itself or only the privacy-preserving service (e.g., face detection) is done by the

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 48 of 109

camera and others are done by the edge and/or cloud servers?. In the following, we
discuss four possible designs of the CBPF ThingVisors.

6.3.1.1 Option 1: Smart surveillance camera

6.3.1.1.1 Root Data Domain (Assumption)

This option assumes the surveillance camera involves face detection function and face
recognition function and such functions can be activated via Camera Virtualization APIs
as shown in Figure 19.

When the Camera Virtualization APIs are called by Relay-TV, the detection function
and face recognition function are activated. The request message including reference data
(i.e., a portrait of the missing person, or a target face) is sent to the smart surveillance
camera and the smart surveillance camera verifies the access right of the user with Auth
system. When the smart surveillance camera detects people in its sight, then it identifies
the faces of the persons and compares them with the reference data. If the two images
match, then the smart surveillance camera generates the data which contains temporary
information, location information, and the URL of matched capture file.

6.3.1.1.2 ThingVisor

The user of CPBF application sends start/stop commands to Relay TV for activation/de-
activation of the smart surveillance camera via vSilo. The payload of command includes
a portrait of a missing person. The command also includes a short-time token to authen-
ticate the user attribute and opt-in information of the user.

The Relay-TV activates the smart surveillance camera via Camera Virtualization APIs
and also initiate the search of the missing person by sending a portrait of the missing
person to the surveillance camera. The Relay-TV retrieves the data which contains
temporary information, location information and the URL of matched capture file from
the root data domain and sends it to the vSilo as a vThing via MQTT broker.

The user can identify the possible time and location of a missing person and also can
retrieve a capture file to check whether the person shown in the capture file is the missing
person or not.

6.3.1.2 Option 2: Monolithic ThingVisor deployed at the edge, with Person-
Finding Capability

6.3.1.2.1 Root Data Domain (Assumption)

If the root data domain can only provide raw camera output images, we have another
option in which all the manipulation of the images to find out the person in search is
performed in a single ThingVisor, or a chain of ThingVisors, deployed at the edge. In
this section, we discuss the former option where image manipulation is done by a single
monolithic ThingVisor. The latter option is discussed in section 6.3.1.3.

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 49 of 109

Figure 19: Simple Relay CBPF ThingVisor

The root data domain, in this case, contains the edge part of VirIoT. VirIoT is
extended to the root data domain and the monolithic ThingVisor is housed within the
edge part of VirIoT in the root data domain as shown in Figure 20.

The root data domain provides pictures taken by surveillance cameras through a
REST interface and the ThingVisor accesses the pictures through the interface. The
REST interface is assumed to provide the video stream taken by the surveillance camera.
We assume the format of the video stream may vary.

Figure 20: Monolithic CBPF ThingVisor

6.3.1.2.2 ThingVisor

The ThingVisor receives a face picture of the person to be found (target face) from a vSilo
in an actuation command and tries to find the face in the pictures from the surveillance
camera (camera pictures). The target face in the command is accompanied with an
authorization code to authorize the use of the ThingVisor. The ThingVisor examines the
authorization code through communications with the authentication system described in

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 50 of 109

Section 6.3.2. The interface between the root data domain where the surveillance camera
is attached and the ThingVisor is REST. The ThingVisor uses HTTP to derive a series
of pictures from the root data domain.

The ThingVisor has three types of function blocks: face detection, feature extraction,
and feature matching. In this implementation, Face API of Microsoft Azure cloud is used
for the feature extraction and feature matching.

The camera pictures received by the ThingVisor is first processed to find faces in the
pictures by the face detection function. Then, features of the found faces are extracted
by the feature extraction function. As for the target face, also the feature extraction
function extracts features from the target face in the ThingVisor. The features from the
camera pictures and ones from the target face are matched. If a match is found, the
ThingVisor informs the match to the subscribing vSilo through VirIoT. VirIoT makes
sure that the message is only delivered to the proper vSilo.

When the face picture of the person to be found is provided to the vSilo, the vSilo
must receive a consent from the party requesting to find the person to transfer the face
picture to ThingVisors which exist at the root data domains of surveillance cameras and
also Microsoft Azure cloud Face API service in the region of the root data domain.

6.3.1.3 Option 3: Service chain ThingVisor deployed at the edge, with Person-
Finding Capability

6.3.1.3.1 Root Data Domain (Assumption)

Similar to the previous one, in this option, the root data domain provides only raw im-
ages/video streams captured from surveillance cameras. VirIoT components, more pre-
cisely, ThingVisor will perform application-specific processing, like face detection, feature
matching, etc.

Again, just like the previous scenario, in order to avoid exchanging privacy data, like
face image, among EU and JP, we assume that VirIoT deploys a part of ThingVisor
components physical proximity to the root data domain (e.g., an edge server installed at
the pilot site).

The root data domain exposes the surveillance images/video streams using RESTful
API, and ThingVisor can retrieve the data using the API.

6.3.1.3.2 ThingVisor

In this option, ThingVisor comprises several micro services, and the micro services are
connected via the network, like service function chaining. Thanks to the micro service
architecture, compared to the monolithic ThingVisor, the service chaining ThingVisor
can improve operability. For instance, a developer of ThingVisor can select or update
communication protocols and processing algorithms by design. In addition, the service
chaining ThingVisor can also support flexible service deployment. For instance, privacy-
concerned services, like face detection and feature extraction, are deployed to the edge
server and other services are deployed to the cloud server.

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 51 of 109

In order to distribute the processing result as a vThing, we assume that data en-
capsulation and/or data format translation is carried on by a separate and dedicated
ThingVisor, named ”TV converter” as shown in Figure 21. TV converter formats the
processing result as a vThing and streams to the vSilo.

Furthermore, TV converter has a capability to handle an actuation message from the
vSilo. Once, TV converter receives an actuation message (e.g., start/stop command),
it tries to verify the access right of the user with Auth System and activate the face
recognition service.

We assume that service chaining ThingVisor is designed by using ThingVisor Factory.

Figure 21: Service chaining CBPF ThingVisor

6.3.1.4 Option 4, Camera Sensor sharing: Chain of distinct ThingVisors
with Face Recognition Capability

6.3.1.4.1 Root Data Domain (Assumption)

Similar to the previous two cases, in this option, the root data domain provides only
raw images/video streams captured from surveillance cameras. ThingVisors will perform
application-specific processing of face recognition. The difference is that an upstream
ThingVisor is deployed in between the camera system providing raw images and the face
recognition ThingVisor (see Figure 28). The goal of this intermediate CameraSensor
ThingVisor is to demonstrate:

� Sharing of a sensor among multiple applications: only one copy of the stream
of pictures travels from the real video camera to the virtual sensor within VirIoT.
Multiple application can then import that ”sensor” vThing, and the same video
frames are efficiently delivered to them by the VirIoT Data Distribution System.

� Chaining of different ThingVisors: the application is not interested in the
raw video frames, but in events such as ”Andrea’s face is detected in a picture”.
Thus, the raw video frames coming from the ”sensor” vThing are processed by
a downstream ”detector” vThing. The application just imports the ”detector”
vThing.

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 52 of 109

The different ThingVisors can be deployed either both at the edge, to ensure privacy
protection, or both at the cloud if privacy is less of a concern, and processing power is
required for scaling-up of the face recognition jobs being shared by a large number of
different tenants/applications.

6.3.1.4.2 ThingVisors

This scenario’s primary focus is not the CBPF capabilities, but the sensor sharing and
its architectural implications. This is why a separate and more detailed description is
carried out in Section 9, to where the reader is redirected.

6.3.2 Attribute-based Authentication

To ensure the security of CBPF pilot, an authorized access to Virtual Things shall be
protected to prevent unexpected use of information. This can be done by service autho-
rization to ThingVisor.

There are three points to verify the access right to ThingVisor.

� ThingVisor itself has a function to verify the request message has an access permis-
sion to ThingVisor.

� vSilo has a function to verify that the request from CBPF application has an access
permission to ThingVisor.

� CBPF application has a function to verify that the (end) user of CBPF application
has an access right to ThingVisor

Figure 22 illustrates how an unauthorized access to ThingVisor is protected.
A token is used to identify user and/or user attribute. The user selects his/her identity

and/or attribute to be authenticated and issue the token signed by holder device. The user
sends a service request message to CBPF application attaching the signed token. CBPF
application sends a request to authenticate his/her identity and/or attribute to Attribute-
based authentication system and receives a response and verifies the user requesting the
service is a right person.

Then the CBPF application sends a service authorization request to Attribute-based
authentication system and then CBPF application receives an authorization code from
Attribute-based authentication system.

Finally CBPF application will send a request to vSilo attaching the authorization
code. vSilo can request a certificate (and public key, if vSilo does not have effective
public key) corresponding to an authorization code. vSilo can verify the authorization
code and it will allow the service if the verification of authorization is successful.

This verification function can be also implemented to ThingVisor.

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 53 of 109

Figure 22: Protection of unauthorized access to ThingVisor

6.3.3 Tenant Data Domain

In order to retrieve vThings from the VirIoT, a tenant must instantiate a specific vSilo.
As differed from the other pilots, the CBPF pilot requires an actuation capability in
ThingVisor. In VirIoT, vSilo has an interface of actuation ThingVisor; vSilo receives the
users’ request messages from the application and transfers the request messages to the
ThingVisor. A detailed mechanism of actuation ThingVisor is reported on Deliverable 3.2.
In this pilot, vSilo handles start and stop commands for CBPF-ThingVisor. Once vSilo
receives the start command from the application, vSilo transfers the start command mes-
sage to the CBPF-ThingVisor, and the ThingVisor will activate the functions regarding
a face recognition, such as feature extraction and feature matching functions. Similarly,
once vSilo receives the stop command, vSilo transfers the message to the ThingVisor,
and ThingVisor will deactivate its own task.

In addition to the actuation capability, vSilo also plays a role of a data broker just
like the other pilots. In the CBPF pilot, vSilo stores vThing data which contains the
geographical information where the request person is found. The example of data model
has already described in Deliverable 5.1.

In the application side, we will retrieve vThing from vSilo using HTTP GET method
and visualize the result on the web browser.

6.4 Deployment strategy

Since the CBPF pilot’s objective is to demonstrate interoperability of Fed4IoT VirIoT
system, the pilot will be deployed at multiple domains. Candidate sites are Murcia and
Grasse as EU sites and Kumamoto, Hakusan and Tokyo as JP sites. A plan for deploying
the pilot is shown in Figure 23. As described in Section 8.2, the pilot needs to comply
the requirement of GDPR. In other words, the surveillance camera images are prohibited
to be exchanged among EU and JP. Therefore as shown in the figure, we can select four
deployment patterns: a root data domain can call the camera virtualization APIs or not,
and CBPF-ThingVisor are deployed on the cloud server or the edge server.

First, we assume that the root data domain can call the camera virtualization APIs.

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 54 of 109

In this case, the privacy-concerned processing, face detection and face recognition, are
done by the camera system itself, so the root data domain handles the privacy-preserving
data. Therefore, we deploy an option 1 CBPF-ThingVisor (see Section 6.3.1.1) in the
edge or cloud server. In the demonstration, we will plan to adopt this option in both
EU and JP sites where the edge service is not available. We will implement the smart
surveillance camera system in the Jetson Nano, and Relay CBPF-ThingVisor is deployed
in the cloud.

Second, we assume that the root data domain has no capability to call the camera
virtualization APIs. In this case, the root data domain provides the raw images/video
streams, and ThingVisor performs face detection and face recognition operations. Thus,
we plan to deploy an option 2 monolithic CBPF ThingVisor at the edge (see Sec-
tion 6.3.1.2) or an option 3 service chain CBPF plus a TV converter at the edge (see
Section 6.3.1.3), on the only edge server at Tokyo site (Waseda University), thus en-
suring privacy-preserving operation. We will implement the CBPF-ThingVisor in the
barebone PC which joins the VirIoT system as a kubernetes edge worker node.

Unlike ThingVisor, vSilo and CBPF application will be deployed in the cloud. This
is because the CBPF application will be accessed by various users, such as police officers,
city hall staffs and families, and vSilo needs to broker Virtual Things produced at multiple
sites. As shown in Figure 23, as well as vSilo and CBPF application, attribute-based
authentication system is also deployed in the cloud in order to provide secure operations
among ThingVisor and CBPF application. A deployment possibility that is Not Good for
privacy concerns is also shown (red dotted box), but not implemented in the CBPF pilot,
where raw images would travel from the Local environment to the Cloud environment.

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 55 of 109

Figure 23: Deployment plan of Cross Border Person Finder pilot

6.5 Data model

Data model used for Cross-border Person Finder is not updated from deliverable D5.1.

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 56 of 109

7 Wildlife Monitoring Pilot

7.1 Description of the pilot

In rural areas, damage to agricultural products by wildlife is serious. It is effective to
use IoT technology to collect information, such as captured and approaching animals, for
countermeasures against wildlife damage, but the cost required for sensor device instal-
lation and application development is a problem. In local cities, budgets and manpower
are not enough, those factors prevent the introduction of IoT technology. To solve this
problem, sensor device installers and application software developers can be connected to
the Fed4IoT virtual IoT environment (the VirIoT platform), which may enable reuse/re-
purposing of sensors and reduces the time and cost required for IoT system development.
For verification purposes, a wildlife monitoring pilot system will be deployed in Hakusan
City, Ishikawa Prefecture, Japan, where wildlife damages are serious. In addition, a sensor
device will be installed for purposes other than animal damage control. By making these
exist as Virtual Thing in the VirIoT platform, it will be possible to develop applications
other than animal damage control applications, such as environment monitoring.

7.2 Description of the components to be instantiated

Figure 24: Pilot system at Kanazawa Institute of Technology

Figure 24 shows the configuration of the test environment for the pilot system at

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 57 of 109

Kanazawa Institute of Technology. Cameras and sensors are installed in the field to collect
information necessary for animal damage control, such as animal types and images, and
environmental information such as temperature and humidity. The application displays
the detected animal position, environmental information, and the like. FIWARE is used
as a data utilization platform.

Figure 25 shows the GUI of the wildlife monitoring application. The service provider
provides the Web based application of the wildlife monitoring. With the application
software, geographical position of the sensor devices are indicated in GUI. Information
such as captured animal type, number of animals and URL of animal image files are
indicated as detailed information of each sensor. Environmental information of devices,
e.g. temperature, humidity, rainfall and illuminance around the devices are also indicated.

Figure 25: GUI of the wildlife monitoring application

As shown in Figure 26, collected data from actual devices exists as Virtual Things
in the VirIoT system, and it can be used by various application software developers
as needed. The VirIoT system creates a vSilo to collect the data needed by application
software developers from various Virtual Things. Since the data format is interchangeable
(e.g. oneM2M, NGSI, etc.) in VirIoT, assets can be used all over the world, depending
on the end-applications data formats.

7.3 Deployment strategy

The pilot system will be deployed around Kanazawa Institute of Technology Hakusan
campus at Hakusan City, Ishikawa Prefecture, Japan. Physical devices such as cameras,
sensors and the root domain gateway will be installed outdoors, in the field. The recorder
of the cameras, some servers for related software running and animal detector (Jetson
Nano) will be installed in a KIT office. The recorder and the servers are accessible

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 58 of 109

Figure 26: Data exchanges via Fed4IoT system

from the Internet. Necessary ThingVisor and vSilos will be deployed in the JP site of
the VirIoT cross-border platform, exploiting the local MQTT Broker of the cluster for
achieving low latency.

7.4 Data model

Table 4 lists the Virtual Things in VirIoT, based on the Wildlife Monitoring use case and
its Real Things, as we are going to virtualize them to be flexibly reused in different vSilos.
The Table also reports the structure of the attributes that will be internally exposed as
NGSI-LD properties of the corresponding Entities, conveyed from the ThingVisors to the
vSilos.

Figure 27 shows an example of the NGSI-LD Entity associated with the Thermometer
Virtual Thing. Other Virtual Things have a similar structure.

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 59 of 109

Virtual Things Attributes Description
Thermometer Location Location of the device

Temperature Sensed data
Hygrometer Location Location of the device

Humidity Sensed data
Rain gauge Location Location of the device

Rainfall Sensed data
Illuminometer Location Location of the device

Illuminance Sensed data
Animal detector Location Location of the device

Animal is present Sensed data
Animal type Results of judgement from photo by Jetson-

nano
Camera Location Location of the device

Photo data of animal URL of the image file
Camera type Type of camera
Resolution Provisioned value

Table 4: Virtual Things for Wildlife Monitoring

1 {
2 "id": "urn:ngsi -ld:KIT:Thermometer01",

3 "type": "Thermometer",

4 "location":{
5 "type": "GeoProperty",

6 "value": {
7 "type": "Point",

8 "coordinates": [36.5313, 136.6285]

9 }
10 },
11 "temperature": {
12 "type": "Property",

13 "observedAt": "2020-05-12 16:02:56.343000",

14 "value": "1",

15 "unitCode": "CEL"

16 }
17 }

Figure 27: An example of NGSI-LD entity published by the thermometer Virtual Thing

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 60 of 109

8 Modular Code for ThingVisors and vSilos

VirIoT is implemented as a microservices architecture. Each component of the platform
runs in a separate container, and as long as the component correctly implements the
VirIoT interfaces, developers are free to implement it using their preferred programming
languages, frameworks and technologies. For instance, two ThingVisors can be developed
in two different languages: currently, our NGSIv2/FIWARE ThingVisors are written in
JavaScript/NodeJS, while the others are written in Python. The advantages of this ap-
proach are evident, and it has allowed each research team collaborating in Fed4IoT to
exploit its own software-writing expertise to the fullest extent, resulting in quick proto-
types.

On the other hand, it is easy to recognize that ThingVisors, and vSilos similarly,
share a bulk of common functionality (e.g. for connecting to the MQTT Data Distribu-
tion, for processing the commands of the control plane, for implementing the vThing’s
data structures, etc...), which needs to be re-implemented in each different programming
language. But within the boundaries of the same programming language, it is advisable
that such common functionality is collected in a common (e.g. python) module that all
ThingVisors can import. The main advantage is that developers wanting to expand the
portfolio of ThingVisors, can focus on the functionality, specific to their ThingVisors, and
integrate with VirIoT via the common module, out-of-the-box. This is crucial for ease
of adoption of the platform from external developers, but plays an important role also
for quickly bootstrapping the Fed4IoT internal teams themselves, when a new vSilo or
ThingVisors is implemented.

For vSilos, we have created a set of bulk python functions that can be easily re-used
in each vSilo.

For ThingVisors, which are the components that external developers are more likely
to contribute, so as to implement an ever growing number of different vThings, we have
created an importable python module that takes care of all the routine workflows. This
way, external developers can focus on imoplementing the distinguishing functionality of
the ThingVisor, only.

8.1 The thingVisor generic module.py python module

The thingVisor generic module.py python module is the Fed4IoT generic modular
code to import in custom ThingVisors, to facilitate developing them. It offers the API
described in the following sections. We assume that the user’s python code imports the
module as follows:

import thingVisor generic module as thingvisor

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 61 of 109

8.1.1 initialize vthing

The most important interface is normally used at the beginning of the user code, in order
to create one (or more) vThing in the ThingVisor. In order to create the vThing, the
following parameters are needed: name, type, description, array of commands.

� The name is used, together with the name assigned to the ThingVisor when it is
added to VirIoT via CLI, in order to form the vThingID that uniquely identifies
the vThing inside the platform.

� The type is the NGSI-LD type assigned to NGSI-LD Entities produced by the
vThing as neutral-format entities representing the stream of context information
generated by this sensor/virtual thing.

� The description is a descriptive string that appears when all vThings are listed
via VirIot’s CLI.

� The array of commands is an array of strings representing all commands supported
by the vThing in case it is an actuator.

The following snippet of python code is an example creating a vThing named ”detec-
tor”, that produces entities of type ”FaceRecognitionEvent” and supports two actuation
commnds: ”startjob” and ”deletejob”.

thingvisor.initialize_vthing(

"detector",

"FaceRecognitionEvent",

"faceRecognition virtual thing",

["startjob","deletejob"]

)

If the ThingVisor has more than one vThing, subsequent initialize vthing calls
can be executed.

8.1.2 params

The thingVisor generic module.py module defines and initializes a thingvisor.params
python dictionary automatically. All parameters that are entered (via the -p option) in
the CLI command that creates the ThingVisor, are automatically available, using the
parameter name as a key in the dictionary.

For instance, the following code snippet would check whether a specific parameter
was given at CLI creation time, and if not, assigns a default value.

if 'fps' in thingvisor.params:

print("parsed fps parameter: " + str(thingvisor.params['fps']))

else:

thingvisor.params['fps'] = 2

print("defaulting fps parameter: " + str(thingvisor.params['fps']))

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 62 of 109

Moreover, the thingVisor generic module.py module takes care of intercepting any
update-thingvisor command issued via CLI, automatically updating in the params

dictionary all parameters present in the update command, to the new values.

8.1.3 publish attributes of a vthing

This interface is the one normally invoked when the vThing, acting as a sensor, is produc-
ing a new value. The newly created context information is structured as neutral-format
NGSI-LD Entities. This API creates a NGSI-LD entity with id and type extracted
from the vthingindex and with properties (or relationships) coming from the given
attributes list. Each item of the list is a python dictionary, as follows:

{

attributename:STRING,

attributevalue:WHATEVER,

isrelationship:BOOL (optional, default False)

}

An example usage follows of a camera sensor vThing named ”sensor” that produces
random frame identifiers, e.g. entities with just one property, named ”frameIdentifier”.

attributes = [

{"attributename":"frameIdentifier", "attributevalue":"xs34Gf"}

]

thingvisor.publish_attributes_of_a_vthing("sensor", attributes)

8.1.4 publish actuation response message

This interface creates a message in response to feedback coming from an actuator, which
is to be communicated back to the vSilo that originated the actuation command. In
case the unicast cmd-nuri of the destination vSilo was not set in the received actuation
command, then a fallback broadcast topic is used, so that data is sent to all subscribers
of this vThing. The following parameters are needed: cmd name, cmd info, id LD,

payload, type of message.

� The cmd name is the name of the original actuation command that triggered the
response being published.

� The cmd info is the original actuation command request itself, which contains the
cmd value, cmd nuri, cmd qos, cmd id and cmd token, as described in section 10.1.

� The id LD is the NGSI-LD identifier of the neutral-format entities produced by the
vThing.

� The payload is a generic object representing the result of the actuation, to be
communicated back to the vSilo that originated the actuation command request.

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 63 of 109

� The type of message can be one of "status" (for actuation that continuously
needs to report changing results, i.e. QoS=2) or "result" (for actuation that is
reporting its final result, i.e. QoS=1).

An example usage follows. Please notice that cmd name, cmd info, and id LD don’t
need to be constructed by hand, because the generic module passes them around auto-
matically, whenever a callback associated to an actuation command is invoked.

thingvisor.publish_actuation_response_message(

cmd_name,

cmd_info,

id_LD,

"The temperature has now reached 30 degrees",

"status"

)

8.1.5 upstream entities and upstream tv http service

The thingVisor generic module.py module is designed so as to easily allow ThingVi-
sors to “chain” to a specifiable upstream vThing: upon chaining, it subscribes to Entities
coming from the upstream vThing, making them easily available.

The name of the upstream vThing to chain to is a configurabile parameter, named
upstream vthingid. By default, at startup, if no upstream vThing of a ThingVisor is
specified via CLI, the module waits for an update command to specify it.

The name of the upstream vThing to chain to can be specified at creation time, when
the ThingVisor is added to VirIoT, as in the following example, where a ThingVisor is
added using the yaml that specifies a FaceRecognition, the name “facerecognition-tv” is
given to it, the upstream vthingid parameter is set to camerasensor-tv/sensor (as it
represents a vThing identifier, which in VirIoT is composed of ThingVisorName/vThing-
Name), and additionally, another custom parameter, named fps, is set to 12.

f4i.py add-thingvisor -y ../yaml/thingVisor-faceRecognition.yaml

-n "facerecognition-tv" -d "recognizes faces"

-p '{"fps":12, "upstream_vthingid":"camerasensor-tv/sensor"}' -z default

Alternatively, by using the update-thingvisor VirIoT command on a running instance
of the TV, the upstream vthingid parameter can be changed in real-time, as follows:

f4i.py update-thingvisor -n facerecognition-tv

-p '{"upstream_vthingid":"camerasensor-tv/sensor"}'

Once the chain is successfully established, the upstream entities array is used as
follows, for instance to access the value of the upstream property named ”frameIdentifier”:

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 64 of 109

thingvisor.upstream_entities[0]["frameIdentifier"]["value"]

It is possible to access the HTTP data streams available at the upstream vThing,
as well, if it offers any, by using the automatically created thingvisor.upstream tv -

http service variable, as follows:

pick second element of the split

upstream_vthing = thingvisor.params['upstream_vthingid'].split('/',1)[1]

upstream_url = "/" + upstream_vthing + "/WHATEVER"

final_url = "http://" + thingvisor.upstream_tv_http_service + upstream_url

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 65 of 109

9 FaceRecognition ThingVisor

This ThingVisor allows to do face recognition using a camera system, and to virtualize
the camera system as a single face recognition device. It is an updated version of the
FaceRecognition ThingVisor described in deliverable D3.2, section 3.3.11. This updated
version was developed to demonstrate the following functionality:

� Sharing of a sensor among multiple applications: only one copy of the stream
of pictures travels from the real video camera to the virtual sensor within VirIoT.
Multiple application can then import that ”sensor” vThing, and the same video
frames are efficiently delivered to them by the VirIoT Data Distribution System.

� Chaining of ThingVisors: the application is not interested in the raw video
frames, but in events such as ”Andrea’s face is detected in a picture”. Thus, the
raw video frames coming from the ”sensor” vThing are processed by a downstream
”detector” vThing. The application just imports the ”detector” vThing.

9.1 How it works

Figure 28 shows the face recognition architecture, comprising the Camera System, which
includes a CSI-based (Camera Serial Interface) video Camera, the CameraSensor ThingVi-
sor, which implements the ”sensor” vThing, and the FaceRecognition ThingVisor, which
implements the ”detector” vThing.

Overall, the Camera System sends to the CameraSensor TV every new video frame
it captures from the Camera. The CameraSensor TV buffers the video frames and gives
them unique identifiers. Whenever the FaceRecognition TV is ready to process a new
video frame, it gets it by name, asking it to the CameraSensor TV. The FaceRecognition
TV processes the frame by comparing it to a target picture of a person. If a match is
found, an event is sent from the FaceRecognition TV to a vSilo (that hosts the IoT and
HTTP Brokers and talks to an external Application).

Users do not interact directly with the FaceRecognition ThingVisor. The whole pro-
cess is driven via the User’s vSilo, instead, as usual in VirIoT. Users POST target faces
(to be matched) to the HTTP Broker running inside the vSilo. Moreover, they can act
(using the usual VirIoT’s actuation workflow) upon the face recognition process by start-
ing (or deleting) a specific job recognition process, identifying it by a unique identifier of
the job and the name of a target person (for example “123456/Andrea” in Figure 28.

The purpose of having the CameraSensor ThingVisor in between the Camera System
and the FaceRecognition is that, in principle, several different downstream ThingVisors,
performing diverse tasks such as face recognition, object recognition, motion detection,
and the likes, can attach to the upstream CameraSensor TV. They will act as downstream
processors, each fetching a copy of the same video frame for different purposes. This
avoids each processor fetching a separate copy of the current video frame from the Camera
System, thus avoiding redundant network traffic from the Root Data Domain (where the
Camera System lives) into VirIoT. Moreover, VirIoT’s HTTP Data Distribution System is

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 66 of 109

Camera System

CSI Camera

camerasensor
to

http CameraSensor
ThingVisor

Pictures

FaceRecognition
ThingVisor

Pictures
+

Picture IDs

VirIoT

Events

Camera System

CSI Camera

camerasensor
to

http

POST /framesinput
POST /framesinput
POST /framesinput

VirIoT

{target face
Recognized
as Andrea}

1

2

3

Buffer

GET /bufferedframes/1

1

vSilo

Root Data Domain VirIoT Data
Distribution

{1} {2} {3}

CameraSensor
ThingVisor

POST
/targetfaces/123456/Andrea

FaceRecognition
ThingVisor

vSilo

*

*1

*

{startjob:123456}

{startjob:
123456}

Figure 28: FaceRecognition Architecture

operating in between the upstream CameraSensor TV and the downstream ThingVisors,
transparently caching all HTTP requests and responses, so that ThingVisors (and vSilos)
that are requesting the same picture (by id) from the CameraSensor TV, will efficiently
get it from the closest proxy.

More specifically:

9.1.1 The Camera System

� Connects to a CSI (Camera Serial Interface) Camera. The current implementation
uses CV2 to capture video from a camera attached to a NVIDIA Jetson Nano board.

� Undistorts, compresses to jpeg, and scales down each video frame.

� Sends each new video frame to the CameraSensor TV via an HTTP POST request
to the TV’s /framesinput API.

The Camera System is currently implemented as a python script responsible for com-
pression and HTTP communication, which is called camerasensor-to-http.py. It, in turn,
imports a python module, which is responsible for video capture, and is called camera -
mod.py. Both can be found in the jetbot scripts folder of the CameraSensor TV.

9.1.2 The CameraSensor ThingVisor

The CameraSensor ThingVisor is organized in four main camponents.

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 67 of 109

../ThingVisor_CameraSensor/jetbot_scripts/camerasensor-to-http.py
../ThingVisor_CameraSensor/jetbot_scripts/camera_mod.py
../ThingVisor_CameraSensor/jetbot_scripts/camera_mod.py

9.1.2.1 REST interface to receive frames

It offers a REST interface to receive video frames, via HTTP POST. The interface is
called /framesinput and accepts multipart POST requests composed of two parts:

� a part named file that is a jpeg file representing the current video frame

� a part named json that is a json file representing the timestamp when the video
frame was captured, in the following form: {"observedAt":STRING}

This REST API is intended for access from the outside of VirIoT, i.e. from the Root
Data Domain, where the Camera System lives. The REST API is available at internal ip
port 5000, so if, for instance, <CAMERASENSORTV PUBLIC IP> is the public ip address to
reach the CameraSensor TV and is the external port mapped onto internal port 5000, the
following echo and curl command sequence is an example to POST a new video frame:

echo {\"observedAt\":\"02-02-2021 14:34\"} > metadata.json

curl -F "file=@currentframe.jpg" -F "json=@metadata.json"

http://<CAMERASENSORTV_PUBLIC_IP>:<PORT_MAPPED_TO_5000>/framesinput

9.1.2.2 Video Buffer

It buffers a certain (configurabile) amount of video frames, FIFO style, and it gives unique
identifiers to them, upon arrival of each new frame. It buffers the jpeg compressed pictures
in memory.

The size of the buffer is a configurabile parameter of the ThingVisor, named buffersize.
The default size of the video buffer is 20. It can be specified at creation time, when the
TV is added to VirIoT, as in the following example, where a TV is added using the yaml
that specifies a CameraSensor TV, the name “camerasensor-tv” is given to it, and the
buffersize parameter is set to 30.

f4i.py add-thingvisor -y ../yaml/thingVisor-cameraSensor-http.yaml

-n camerasensor-tv -d "camera frames via http" -p '{"buffersize":30}'

-z default

Alternatively, by using the update-thingvisor VirIoT command on a running instance
of the TV, the buffersize parameter can be changed in real-time, as follows:

f4i.py update-thingvisor -n camerasensor-tv -p '{"buffersize":40}'

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 68 of 109

9.1.2.3 ”sensor” vThing

It offers a single vThing, named “sensor”. This vThing, upon arrival of each new frame,
emits an event representing context information about the received video frame, in the
form of a NGSI-LD Entity containing the picture’s identifier.

The NGSI-LD Entity emitted at each frame arrival is represented in NGSI-LD “neu-
tral format” (assuming the ThingVisor’s name is “camerasensor-tv”) by entity of type
“NewFrameEvent”. It has just one Property, named “frameIdentifier”. The information
about the timestamp of the video frame is dropped, as of now, since it is not needed for
face recognition purposes. Here follows an example:

1 {
2 "id" : "urn:ngsi -ld:camerasensor -tv:sensor",

3 "type" : "NewFrameEvent",

4 "frameIdentifier" : {
5 "type" : "Property",

6 "value" : "1623229264110-0"

7 }
8 }

9.1.2.4 REST interface to fetch frames

It offers a REST interface to fetch a specific frame by its identier, via HTTP GET. The
interface is called /bufferedframes/<frameidentifier> and accepts GET HTTP re-
quests. It gives back data with mime-type “image/jpeg”. The following curl command
is an example to GET video frame by its id:

curl --output videoframe.jpg

http://<CAMERASENSORTV_PUBLIC_IP>:<PORT_MAPPED_TO_5000>/bufferedframes

/1623229264110-0

9.1.3 The FaceRecognition ThingVisor

It is designed so that it “chains” to an upstream “sensor” vThing implemented by a
CameraSensor ThingVisor: upon chaining, it subscribes to Entities coming from the
upstream CameraSensor’s “sensor” vThing. Such Entities convey the identifiers of a
stream of video frames buffered by the CameraSensor TV. FaceRecognition GETs the
new frames at its convenience (thus operating at its own framerate, ususally different
than the framerate the video frames are produced by the Camera System).

The rate that FaceRecognition uses to get frames from CameraSensor TV is a config-
urabile parameter of the TV, named fps. Its default value is 2.

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 69 of 109

The name of the upstream vThing to chain to is a configurabile parameter as well,
named upstream vthingid. By default, at startup, if no upstream vThing of a Cam-
eraSensor TV is specified, the FaceRecognition TV sits idle, waiting for an update com-
mand to specify it.

Both parameters can be specified at creation time, when the TV is added to VirIoT, as
in the following example, where a TV is added using the yaml that specifies a FaceRecog-
nition, the name “facerecognition-tv” is given to it, the upstream vthingid parameter
is set to camerasensor-tv/sensor (as it represents a vThing identifier, which in VirIoT
is composed of ThingVisorName/vThingName), and the fps parameter is set to 12.

f4i.py add-thingvisor -y ../yaml/thingVisor-faceRecognition.yaml

-n "facerecognition-tv" -d "recognizes faces"

-p '{"fps":12, "upstream_vthingid":"camerasensor-tv/sensor"}' -z default

Alternatively, by using the update-thingvisor VirIoT command on a running instance
of the TV, both parameters (either one-by-one or together) can be changed in real-time,
as follows:

f4i.py update-thingvisor -n facerecognition-tv

-p '{"upstream_vthingid":"camerasensor-tv/sensor"}'

f4i.py update-thingvisor -n facerecognition-tv -p '{"fps":6}'

9.1.3.1 ”detector” vThing

It offers a single vThing, named “detector”. The “detector” vThing does not produce
any information (in the form of NGSI-LD Entities) on its own. Thus, it is not a sensor,
rather an actuator. Specifically, it represents an actuator that is activated by users via
startjob commands, that need to have a QoS of 2, meaning the command does not
terminate immediately with a given result, but the status of the command is going to be
continuously updated by the actuator.

Users give an identifier to the job, and then they issue the startjob command to the
actuator. Once the job is started via its command, the “detector” updates the command
status whenever a matching face is detected. The updated cmd-status embeds links
to the video frame that matched (recognized-uri), to the original picture of the face
(original-uri), as well as the corresponding job’s name (job) and the name of the
person depicted in the original picture (name).

In parallel and asynchronously to starting jobs, users have to POST target pictures of
faces they want to be recognized (see the /targetfaces API below). Such target pictures
are POSTed under a given identifier that has to match the identifier of a corresponding
job, and a person’s name (e.g. “Andrea”) has to be specified, additionally, to further

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 70 of 109

tag the matches when they occur. Pictures can be POSTed without a corresponding job
being started yet; a job can be started without targets. As soon as both a job and target
pictures, with the same identifier, are present in the “detector”, it starts sending back
the cmd-status updates to the startjob command status receiver queue of every vSilo
that has the “detector” vThing.

Several jobs can be started (giving different identifiers to them), and the status queue
will receive a stream of updates (each possibly overwriting the previous update, depending
on the specific IoT Broker that receives the updates).

More specifically, the “detector” vThing implemented by the FaceRecognition TV
offers two commands:

� startjob command;

� deletejob command.

An example JSON object to send to the startjob command, that starts a job, giving
“123456” identifier to it, is:

1 {
2 "cmd -id":"xaxaxa",

3 "cmd -qos":2,

4 "cmd -value":{"job":"123456"}
5 }

The deletejob command is used to remove all pictures for a given job name, and
to stop the corresponding recognition process. An example follows, that stops the above
job:

1 {
2 "cmd -id":"fgfgfg",

3 "cmd -value":{"job":"123456"}
4 }

The “detector” vThing, being an actuator only, is represented at the ThingVisor by
an NGSI-LD Entity having just one property, i.e. the default commands property that
all VirIoT actuators have, that lists all commands available at the actuator. Its id
is “urn:ngsi-ld:facerecognition-tv:detector” (assuming the ThingVisor is named
“facerecognition-tv”), and its type is “FaceRecognitionEvent”, as follows:

1 {
2 "id": "urn:ngsi -ld:facerecognition -tv:detector",

3 "type": "FaceRecognitionEvent",

4 "commands": {
5 "value": ["startjob", "deletejob"],

6 "type": "Property"

7 },
8 }

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 71 of 109

urn:ngsi-ld:facerecognition-tv:detector

Additionally, the ”detector” vThing:

� Offers a REST interface to insert target pictures under a job identifer, additionally
tagging them with a person name, via HTTP POST, and to retrieve information
about them, via HTTP GET. The interface is called:

/targetfaces/<jobdentifier>/<personname>.

This REST API is available at internal ip port 5000, but it is NOT intended for
access from the outside of VirIoT, i.e. Users do not directly POST target pictures
to this FaceRecognition TV’s /targetfaces endpoint at port 5000. The API is
proxied by the vSilos that have the “detector” vThing, instead, because Users
entrypoints to VirIoT are vSilos, not ThingVisors.

� Offers a REST interface to fetch pictures (both target and recognized) via their
identier, via HTTP GET. Similar to the above, this is accessed thorugh the vSilo.
The interface is called:

/media/<pictureidentifier>.

9.1.4 The vSilo that has a “detector” vThing

Target pictures of faces to be matched against the incoming video frames are POSTed by
Users to the vSilo’s HTTP Broker. The HTTP Broker running inside the vSilo acts as
a proxy to the HTTP REST interfaces offered by the FaceRecognition ThingVisor, that
are not intended for direct access from Users. Thus the vSilo’s HTTP Broker acts as the
only entry point for Users (and Applications) to the face recognition process.

From the User’s perspective, this is the typical workflow to operate the face recognition
process. In the following, we assume an NGSI-LD flavor vSilo is used.

1) Add the “detector” to the vSilo:
If the FaceDetector TV is called “facerecognition-tv”, the NGSI-LD silo is called

“silongsildorionld1-eu” and the User is called “tenant1”, then the command is:

f4i.py add-vthing -v facerecognition-tv/detector -t tenant1

-s silongsildorionld1-eu

2) Check the received NGSI-LD Entity and its capabilities:
Assuming the NGSI-LD Broker runs on internal port 1026, which is mapped to ex-

ternal , the command will be:

curl http://<VSILO_PUBLIC_IP>:<PORT_MAPPED_TO_1026>/ngsi-ld/v1/entities/

urn:ngsi-ld:facerecognition-tv:detector | jq

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 72 of 109

Resulting in the following NGSI-LD Entity, where we see the list of available com-
mands, and the empty commands, command-status and command-result properties cre-
ated in the Broker to implement the actuation. We also see the generatedByVThing

property that keeps track of the vThing that created the Entity (not relevant to this
workflow).

1 {
2 "id": "urn:ngsi -ld:facerecognition -tv:detector",

3 "type": "FaceRecognitionEvent",

4 "commands": {
5 "value": ["startjob", "deletejob"],

6 "type": "Property"

7 },
8 "generatedByVThing": {
9 "value": "facerecognition -tv/detector",

10 "type": "Property"

11 },
12 "startjob": {
13 "value": {},
14 "type": "Property"

15 },
16 "startjob -status": {
17 "value": {},
18 "type": "Property"

19 },
20 "startjob -result": {
21 "value": {},
22 "type": "Property"

23 },
24 "deletejob": {
25 "value": {},
26 "type": "Property"

27 },
28 "deletejob -status": {
29 "value": {},
30 "type": "Property"

31 },
32 "deletejob -result": {
33 "value": {},
34 "type": "Property"

35 }
36 }

3) Send one (or more) target pictures of faces to be recognized, assigning persons’
names to them and a job identifier:

Pictures are POSTed to vSilo’s HTTP proxy running on internal port 80 (mapped
to external). It is important to notice that the User addresses the “detector” vThing
directly, without knowing the details where the vThing is currently deployed within
VirIoT distributed microservices architecture. The HTTP Data Distribution will take
care of efficiently routing the HTTP request.

The 123456 job identifier serves the purpose of a “secret link” able to protect and
isolate the various jobs that different Users of different vSilos are sending to the FaceRe-
cognition’s “detector” in parallel.

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 73 of 109

curl -X POST -F "pic=@bio.jpg" http://<VSILO_PUBLIC_IP>:<

PORT_MAPPED_TO_80>/vstream/facerecognition-tv/detector/targetfaces

/123456/Andrea

4) Send a startjob command to the detector with the job identifier we want to start:
This is accomplished, in case of NGSI-LD Broker, by updating the value of the

startjob NGSI-LD property (by a PATCH call at the /attrs/startjob endpoint of the
Broker’s API).

curl -X PATCH http://<VSILO_PUBLIC_IP>:<PORT_MAPPED_TO_1026>/ngsi-ld/v1/

entities/urn:ngsi-ld:facerecognition-tv:detector/attrs/startjob

-d '{"value":{"cmd-id":"xaxaxa","cmd-qos":2,"cmd-value":{"job

":"123456"}}}'

-H "Content-Type: application/json"

5) Check for periodic updates of the startjob-status property:
Here follows an example snapshot of the NGSI-LD Entity representing the “detector”

right after it has detected a match for Andrea’s face. The original picture was POSTed
under job “123456” and tagged as “Andrea”. It is downloadable, through vSilo’s HTTP
proxy, at “/media/60ba4b6a5faca138c398b3d4”. The video frame that matched is avail-
able at “/media/60ba4b7b5faca138c398b3e8”.

1 {
2 "id": "urn:ngsi -ld:facerecognition -tv:detector",

3 "type": "FaceRecognitionEvent",

4 "commands": {
5 "value": ["startjob", "deletejob"],

6 "type": "Property"

7 },
8 "startjob": {
9 "value": {

10 "cmd -id": "xaxaxa",

11 "cmd -qos": 2,

12 "cmd -value": {
13 "job": "123456"

14 }
15 },
16 "type": "Property"

17 },
18 "startjob -status": {
19 "value": {
20 "cmd -id": "xaxaxa",

21 "cmd -nuri": "viriot://vSilo/tenant1_silongsildorionld1-eu/data_in",

22 "cmd -qos": 2,

23 "cmd -value": {
24 "job": "123456"

25 },
26 "cmd -status": {
27 "job": "123456",

28 "name": "Andrea",

29 "original -uri": "/ media/60ba4b6a5faca138c398b3d4",

30 "recognized -uri": "/media/60ba4b7b5faca138c398b3e8"

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 74 of 109

31 }
32 },
33 "type": "Property"

34 },
35 "startjob -result": {
36 "value": {},
37 "type": "Property"

38 },
39 "deletejob": {
40 "value": {},
41 "type": "Property"

42 },
43 "deletejob -status": {
44 "value": {},
45 "type": "Property"

46 },
47 "deletejob -result": {
48 "value": {},
49 "type": "Property"

50 }
51 }

6) Download the matching picture from the /media API.

9.2 How to run it

As explained above, the FaceRecognition ThingVisor gets video frames from an upstream
CameraSensor ThingVisor. Hence the fist thing to do is to add a CameraSensor TV to
VirIoT

9.2.1 Running the CameraSensor ThingVisor

f4i.py add-thingvisor -y ../yaml/thingVisor-cameraSensor-http.yaml

-n camerasensor-tv -d "camera frames via http"

-p '{"buffersize":30}' -z default

Also, please run a set-endpoint VirIoT command on the “sensor” vThing of the
CameraSensor TV, to make the HTTP Data Distribution able to proxy the /framesinput
and /bufferedframes APIs by simply using the name of the vThing. This way, the
FaceRecognition TV (and other ThingVisors as well) can GET video frames using the
CameraSensor TV’s service name, globally within VirIoT, exploiting efficient caching and
multicast distribution of the video frames.

f4i.py set-vthing-endpoint -v camerasensor-tv/sensor

-e http://127.0.0.1:5000

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 75 of 109

9.2.2 Running the Camera System

The next step is to run the camera system, which sends video frames to the CameraSensor
TV’s HTTP interface. Thus, we need to know public IP address to access the services
running inside the VirIoT cluster and, most important, the external port that maps to
the internal port 5000 of the CameraSensor TV. This can be accomplished by inspecting
the thingvisor via a VirIoT inspect-thingvisor command:

f4i.py inspect-thingvisor -v camerasensor-tv | grep 5000/tcp

The Camera System that we have developed for testing purposes runs on a Jetson
Nano. It can be found in the jetbot scripts folder of the CameraSensorn ThingVisor and
is called camerasensor-to-http.py. It, in turn, imports a python module, which is
responsible for video capture, and is called camera mod.py. Both can be found in the
jetbot scripts folder of the CameraSensor TV.

Some pre-requisites are needed:

pip3 install requests

pip3 install traitlets

pip3 install opencv-python

Assuming that is the output of the inspect-thingvisor VirIoT command above, it
is executed simply as follows, i.e. by specifying the base URL of the CameraSensor TV’s
API:

python3 ./camerasensor-to-http.py

http://<CAMERASENSORTV_PUBLIC_IP>:<PORT_MAPPED_TO_5000>

9.2.3 Running the FaceRecognition ThingVisor

Is is now possible to run the FaceRecognition ThingVisor, specifying the name of its
upstream CameraSensor TV, which we had created above:

f4i.py add-thingvisor -y ../yaml/thingVisor-faceRecognition.yaml

-n "facerecognition-tv" -d "recognizes faces"

-p '{"fps":4, "upstream_vthingid":"camerasensor-tv/sensor"}'

-z default

Also, please run a set-endpoint VirIoT command on the “detector” vThing of the
FaceRecognition TV, to make the HTTP Data Distribution able to proxy the /media

and /targetfaces APIs.

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 76 of 109

f4i.py set-vthing-endpoint -v facerecognition-tv/detector

-e http://127.0.0.1:5000

9.2.4 Run a vSilo

At this point, Users can run their favourite vSilo and add the “detector” vThing to it, as
explained above, to control the face recognition process.

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 77 of 109

10 Access Control Framework instantiation in VirIoT

In previous Deliverables (D2.3 - System Architecture Second Release, and D4.2 - Smart
City information sharing services - second release), we have explained VirIoT’s architec-
ture, and how security and privacy are provided. Two different access control technologies
have been implemented, a more coarse grained one based on JSON Web Tokens (JWT),
and a more fine grained one, which implements the Distributed Capability-Based Access
Control DCapBAC approach.

In Section 10.1 we show how the token-based approach is used to control access by
vSilos (and consequently applications) to virtualized actuators, acting at the level of the
actuation commands offered by the vThings inside ThingVisors.

In sections 10.2 to 10.4 we show how the DCapBAC was integrated in VirIoT as
a security plugin that interacts directly with the Master Controller, presenting all the
relevant interactions.

10.1 Token-based Access Control of Actuators

While physical objects can usually be manipulated by just one person at a time, vThings
can much more easily offer different partial functionality in parallel, to different (or the
same) applications.

For instance, a virtualized door lock may offer both a ”door-open” command and a
”permanently-door-block” command: the ”door-open” functionality is available to every
application that has been granted the key, while the ”permanently-door-block” command
is only available to specific applications (for instance police permanently blocking the door
from remote).

Access control to the ”door-open” capability is resource-centric: the possibility to
open the door must be granted to all applications that possess the key, regardless their
identity.

Conversely, only personnel positively identified as police has the possibility to operate
the ”permanently-door-block” command: access control is identity-based in this case.

One application at a time acquires exclusive access to the resource to be actuated:
for instance the ”students application” has exclusive access to the ”door-open” command
of the laboratory during the day, while the ”lab security” application has exclusive ac-
cess at night time. Both applications can be overridden by the ”police application” at
any time, because that application possesses a different token, allowing execution of the
”permanently-door-block” command.

Other unorthodox access control policies are location or time based. Consider for
instance a kiosk issuing progressive tickets that are subsequently used to grant access to
a time consuming experience, such as a 10 minutes test flight of a drone from a remote
control application running inside a vSilo. In this case access is conditional to the time
the ticket was acquired (or possibly even the physical presence of the application’s users
at the kiosk).

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 78 of 109

This idea of granting ”the possibility to operate” different parts of the virtualized
actuators, based on flexible policies, is nicely implemented by the concept of a token-
based access control, whereas tokens are released by vThings to applications.

We have explored this concept by associating, inside ThingVisors, one or more tokens
to each command supported by the ThingVisor’s vThings. Tokens are then distributed
to the vSilos that need to operate the command. The vSilo must subsequently show the
token to the ThingVisor in order to gain access to that command.

Our token-based approach has the following characteristics:

� ThingVisors can be stateless to a greater extent, because the application, not the
ThingVisor, keeps track of tokens: the functions that an application chooses, or is
authorized, to access, are proved by possession of the token;

� it does not require ThingVisors to identify applications, in order to evaluate the
outcome of access control, i.e. to grant or deny access. ThingVisors do not need to
assume that applications are known beforehand in an access control list. Access can
be granted to anonymous applications, or applications identified by pseudonyms;

� tokens are a flexible access control method that can, with the help of dedicated
rules, support many different, and generic, access control policies, even unorthodox
ones;

� it fosters collaboration among applications, because tokens can be traded in order
to access other applications’s capabilities. Since tokens only relate to a limited set
of commands, they are less risky to disclose or broadcast to others than, for instance
a password. As an example, the ”lab security” application that can ”door-open”
the laboratory to the security personnel, may lend its token to another application
that has permission to operate a camera for face recognition purposes; in this way,
after recognizing a face, it can also open the door to let the person enter the lab.
The two applications now collaborate without the need for developers to foresee
and implement any access control at the ThingVisor, specific for this collaboration
use case: the security policy is implemented outside of the vThings, thanks to the
trading of tokens.

From the examples above, we see that different virtualized actuators may need differ-
ent access-control policies: applications can send actuation-commands, but those com-
mands may or may not be accepted by the ThingVisor depending on the tenant’s pri-
ority and the current state of the vThing. By embedding authorization tokens within
commands we provide to VirIoT’s applications the means to carry access-control policy
decisions, but leave the implementation of the specific policy within each ThingVisor,
and thus in the hands of the developer of the vThing. This makes VirIoT flexible enough
to include actuators with unforeseen policies.

The policy for obtaining the token(s) that grant authorization to subsequently execute
an actuation command, or more broadly to control a vThing, is vThing-dependent, since
the information needed to obtain the authorization depends on the specific use case’s

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 79 of 109

1 {"id": "urn:ngsi -ld:lamp:light1",

2 "type": "lamp",

3 "on": {
4 "type": "Property",

5 "value": false},
6 "commands": {
7 "type": "Property",

8 "value": ["set -on","token -req"]},
9 "@context":["https://uri.etsi.org /..."]}

Figure 29: NGSI-LD Entity representing context information of a lamp

security. But we have designed a dedicated field of command requests, named cmd-token,
to carry the token once obtained, which proves that the application issuing the command
is authorized.

Let us now explain in details how we have implemented actuation and management
of authorization tokens, through a generic example involving a simple “virtual lamp”
vThing, that is a Virtual Actuator because it supports two actuation commands, specif-
ically set-on and token-req.

Figure 29 shows the context data associated to the virtual lamp, which includes
two Properties. The first Property is named on; its value is the status of the lamp
(false means lamp off). The second Property is VirIoT’s standard property in case the
vThing is a Virtual Actuator, i.e. commands; its value is the list of possible actuation-
commands offered by the Virtual Actuator. In this case, this list is composed of set-on
and token-req commands, that can be used to configure the on status of the lamp and
to request an authorization token, respectively.

Figure 30 shows the interaction between tenants and the virtual lamp, resulting in
the twinned real lamp changing its state from off to on. We have two tenants who have
the virtual lamp in their vSilos, whose initial state is off (on=false). For each actuation-
command, a vSilo exposes in its IoT Broker three actuation-pipes used by the tenant to
inject the actuation-command and receive feedback messages2.

To turn on the lamp, the tenant of vSilo1 obtains a authorization token to execute
the command as discussed later on (steps 1,2) and then injects into the set-on actuation
pipe the actuation-command shown in Figure 31. The command is immediately received
by the IoT Controller and then transferred to the ThingVisor that implements the virtual
lamp (step 3). When the virtual lamp receives the message, the actuation-command is
accepted and the virtual lamp starts the actuation process of the real lamp, using the
proprietary API the lamp provides.

When the actuation-command is accepted, a status feedback is sent to vSilo1 only,
to inform the tenant that the actuation is in progress (step 4). The feedback message is
received by the IoT Controller and relayed to the set-on-status actuation-pipe of the
IoT Broker, from which it can be observed by the tenant.

2The implementation of an actuation-pipe depends on the IoT Broker. For example: in oneM2M,
an actuation-pipe is implemented by a oneM2M container; in NGSIv2/NGSI-LD, an actuation pipe is
implemented by an Entity. The IoT Controller is made aware of the actuation-pipes to be created via
the commands Property.

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 80 of 109

ThingVisor

 IoT

Controller

IoT BrokervSilo1

IoT BrokervSilo2

virtual lamp

set-on = True

on = true

set-on status = accepted

set-on result = OK

switch
lamp on

lamp

on = false

on = true

NGSI-LD PATCH
messages

IoT
Controller

token-req = "tenant-id"

token-req-result = 0x2ff..

token-req

token-req-status

token-req-result

virtual lamp

on

set-on

set-on-status

set-on-result

token-req

token-req-status

token-req-result

virtual lamp

on

set-on

set-on-status

set-on-result
1

2

3

4

5

6

Figure 30: Virtual Actuator workflow, QoS = 2

At the end of the actuation, when the lamp is turned on, a result feedback is sent to
vSilo1 only, to inform the tenant that the actuation is complete (step 5). This feedback
message is relayed from the IoT Controller to the set-on-result actuation-pipe of the
IoT Broker. Also, since the context Property on is changed, as a result of the actuation,
from False to True, a context update message is sent to all vSilos, as previously explained
(step 6).

Actuation-commands and status/result feedback are simple messages, and for mere
format consistency, they are encoded by NGSI-LD PATCH messages, as it is shown, for
the actuation-command, in Figure 31. The message represents the set-on actuation-
command as a NGSI-LD Property whose value is a JSON object containing the following
attributes:

� cmd-value contains the arguments of the command;

� cmd-id is a unique id of the command;

� cmd-qos is a concept of “actuation QoS” we introduced to differentiate the types of
feedback messages sent by a Virtual Actuator: 0 = no feedback; 1 = result message
at the end of the actuation; 2 = one or more status messages during the actuation
and a result message at the end of the actuation3;

3QoS=0 is useful for use cases where actuation-commands are issued at such a high rate that waiting
for feedback is useless. QoS=1 is useful for fast and reliable actuation. QoS=2 is useful for a long

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 81 of 109

1 {"id": "urn:ngsi -ld:lamp:light1",

2 "type": "lamp",

3 "set -on" : {
4 "type": "Property",

5 "value": {
6 "cmd -value":true,

7 "cmd -id":"123456",

8 "cmd -qos":"1",

9 "cmd -token":"0x23456",

10 "cmd -nuri ":"viriot:/vSilo/tenant1_vSilo1/data_in"}}}

Figure 31: set-on actuation-command

� cmd-token is the authorization token;

� cmd-nuri is the notification URI where to send actuation feedback and, by default,
it is the data in topic of the vSilo (see Deliverable D4.2), so that only the requesting
vSilo will receive feedback messages.

Status/result feedback messages are identical to the actuation-command they refer to,
but have the additional cmd-status/cmd-result keys.

Figure 30 shows a possible example of the procedure to obtain and use the authoriza-
tion token. The virtual lamp exposes a specific actuation-command token-req, which
is used by a tenant to request a token to be used in any subsequent actuation-command
(e.g., set-on) in the cmd-token field (step 1). Information about the tenant, for example
the tenant-id, is included in the cmd-value field of token-req. When the ThingVisor
receives the token-req, the access-control policy is used and eventually a token is sent
back with the token-req-result message (step 2).

Thus, VirIoT uses the same approach as HTTP, where the authorization header is the
means to carry result of an access-control policy, but without using the HTTP protocol.

10.2 DCapBAC Component functionalities

The Distributed Capability-Based Access Control (DCapBAC) technology decouples the
traditional approach provided by the XACML framework into two phases. The authori-
sation request phase, which is provided by this framework, and the access phase. Once
the authorisation is granted, the Capability Manager component issues authorisations
tokens which must be included in subsequent requests to the Master-Controller using its
proper API. A PEP Proxy captures these requests, validates the authorisation tokens,
and in case of a positive validation, acts as a mere intermediary between the User and
the Master Controller forwarding forth and back the corresponding messages.

The authentication is also considered in this scenario thanks to the Identity Manager,
to be more specific we are using the FIWARE GE Keyrock.

lasting actuation that requires feedback during execution. For example, for the virtual face detector, an
actuation-command set-face-feature is used to send the parameters of the face to be detected, QoS
is set to 2, and status messages are sent to the requesting vSilo each time the face is detected. We used
QoS=2 for the lamp example for completeness, but QoS=1 is more appropriate for this use case.

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 82 of 109

Figure 32 shows DCapBAC and Blockchain technologies, where access control process
is decoupled in two phases:

� 1st operation to receive authorisation. A token is issued

� 2nd operation access to the resource previously validating the token.

Figure 32: DCapBAC Operation Model and Blockchain

10.2.1 IdM-Keyrock

Keyrock4 is a FIWARE GE responsible for the Identity Management. It implements an
OAuth2 API for managing the identities in its repository, as well as for authentication

4FIWARE GE Keyrock: https://fiware-idm.readthedocs.io/en/latest/index.html

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 83 of 109

https://fiware-idm.readthedocs.io/en/latest/index.html

purposes. Once the authentication is granted, an authentication token is issued by the
Identity Manager, and it should be included in the next call to the Capability Manager.
The authentication enforcement is usually carried out by a PEP PROXY which after
receiving the request, with the corresponding authentication token within, validates this
latter by contacting the Identity Manager.

Nevertheless, in our scenario, the authentication enforcement is carried out by the
Capability Manager, as we will later see.

10.2.2 XACML framework PAP and PDP

This element corresponds to the implementation of the XACML framework. It comprises:

� a Policy Administration Point (PAP) which is responsible for managing the XACML
authorisation policies through a GUI. These XACML policies are defined according
to a triplet (subject, resource, action).

� a Policy Decision Point (PDP), responsible for matching the authorisation requests
with the XACML policies defined by the PAP, and issuing positive/negative verdicts
accordingly.

10.2.3 Capability Manager

The Capability Manager is the contact point for services and users that intend to access
the resources offered by the Master-Controller’s API. In this sense, it provides a REST
API for receiving authorisation queries. These must include the authentication token
already issued by the Identity Manager. So, once an authorisation query is received, it
firstly interacts with the Identity Manager to validate the authentication token. Secondly,
it tailors this to a XACML authorisation request, and forwards it to the XACML-PDP.
Finally, after receiving a positive verdict from this component, it issues the Capability
Token (authorisation token) which will be later used in future queries to the Master
Controller.

Regarding DCapBAC scenario, Capability Manager covers the first phase of the access
control process (receive authorisation).

10.2.4 PEP-Proxy

This PEP-Proxy is responsible for enforcing the authorisation in the access phase. There-
for, this component is responsible for receiving the queries aimed at the Master Controller,
which must include the corresponding ‘Capability Token‘, validates them, and forward
the requests to the Master-Controller, as well as the responses coming from the Master
Controller back to the requester.

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 84 of 109

Figure 33: IdM-Keyrock authentication

10.3 DCapBAC Components operation

This section explains the interaction between all the security components and the inte-
gration with Master-Controller component. In this sense, it details the corresponding
API of each component and the sequence of the resulting accesses.

10.3.1 IdM-Keyrock

IdM-Keyrock provides a REST API for receiving authentication queries. When an au-
thentication request is received, the component recovers user credentials from the JSON
body request and returns an IdM token if it’s the case. This token will be required
by authorisation process (through Capability Manager). Figure 33 shows the sequence
diagram of authentication request.

Resources can be managed through the API (e.g. Users, applications and organi-
zations). One of the main uses of IdM-Keyrock is to allow developers to add identity
management (authentication and authorization) to their applications based on FIWARE
identity. This is possible thanks to OAuth2 protocol. Further information can be found
in the Keyrock Apiary5

IdM-Keyrock allows defining user attributes, and too, assign them to organizations or
application roles, etc... This information is one of the pieces that the XACML framework
will require to define access control policies.

5Keyrock Apiary:https://keyrock.docs.apiary.io

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 85 of 109

https://keyrock.docs.apiary.io

Figure 34: XACML authorisation request verdict

10.3.2 XACML framework PAP and PDP

XACML-PAP is a GUI for managing XACML policies (configuration), it’s not interfering
in obtaining authorisation requests verdict.

XACML-PDP offers an endpoint which returns the verdict when an authorisation
request is received from Capability Manager, it recovers from the body:

� the subject and subject’s type of the resource’s request. These fields reference the
IdM-Keyrock stored information. In this sense, it can be a user attribute (user
name, email, etc...), a specific organization, etc...

� the resource: endpoint (protocol+IP+PORT) + path of the resource’s request

� the action: method of the resource’s request (”POST”, ”GET”, ”PATCH”, ”DELETE”)

With this information, XACML-PDP accesses the XACML policies for validating
authorisation requests and obtain if the subject can access a resource and can perform
the action over the resource (verdict). Figure 34 shows the sequence diagram of this
interaction request.

The next box shows the format of a PDP obtain verdict request, only it is needed to
replace ‘subjectType‘, ‘subject‘, ‘resource‘ and ‘action‘ with the correct values, related
with XACML policies defined previously in XAMCL-PAP.

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 86 of 109

POST http://{XACML-IP}:{XACML-Port}/XACMLServletPDP/

<Request xmlns="urn:oasis:names:tc:xacml:2.0:context:schema:os">

<Subject SubjectCategory="urn:oasis:names:tc:xacml:1.0:subject-

category:access-subject">

<Attribute AttributeId=subjectType DataType="http://www.w3.org

/2001/XMLSchema#string">

<AttributeValue>subject</AttributeValue>

</Attribute>

</Subject>

<Resource>

<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:resource:

resource-id" DataType="http://www.w3.org/2001/XMLSchema#string

">

<AttributeValue>resource</AttributeValue>

</Attribute>

</Resource>

<Action>

<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-

id" DataType="http://www.w3.org/2001/XMLSchema#string">

<AttributeValue>action</AttributeValue>

</Attribute>

</Action>

<Environment/>

</Request>

HEADERS:

Content-Type: text/plain

Regarding the response, there are three possible verdicts (Permit, NotApplicable,
Deny) all of them with 200 - OK status code response. The following boxes show the
format of the different responses.

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 87 of 109

RESPONSE: HTTP/1.1 200 OK; Verdict = Permit

<Response>

<Result ResourceID="resource">

<Decision>Permit</Decision>

<Status>

<StatusCode Value="urn:oasis:names:tc:xacml:1.0:status:ok"/>

</Status>

<Obligations>

<Obligation ObligationId="liveTime" FulfillOn="Permit">

</Obligation>

</Obligations>

</Result>

</Response>

RESPONSE: HTTP/1.1 200 OK; Verdict = NotApplicable

<Response>

<Result ResourceID="resource">

<Decision>NotApplicable</Decision>

<Status>

<StatusCode Value="urn:oasis:names:tc:xacml:1.0:status:ok"/>

</Status>

</Result>

</Response>

RESPONSE: HTTP/1.1 200 OK; Verdict = Deny

<Response>

<Result ResourceID="resource">

<Decision>Deny</Decision>

<Status>

<StatusCode Value="urn:oasis:names:tc:xacml:1.0:status:ok"/>

</Status>

</Result>

</Response>

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 88 of 109

10.3.3 Capability Manager

This component provides a REST API for receiving authorisation queries, which are
tailored and forwarded to the XACML PDP for a verdict.

When an authorisation request is received by Capability Manager, it recovers from
the JSON body:

� an authentication token which proceeds from the authentication phase (access to
IdM-Keyrock).

� an endpoint of the resource’s request (protocol+IP+PORT). In DCapBAC scenario,
it corresponds with PEP-Proxy component.

� the action/method of the resource’s request (“POST”, “GET”, “PATCH”, ”DELETE”).

� the path of the resource’s request.

With this information, Capability Manager:

� Access to authentication component (IdM-Keyrock) to validate authentication to-
ken.

� Access to XACML framework for validating authorisation requests (through PDP)
and obtain if the subject can access a resource and can perform the action over the
resource (verdict).

� If a positive verdict is received, finally, the Capability Manager issues an authorisa-
tion token called Capability Token which is a signed JSON document that contains
all the required information for the authorisation, such as the resource to be ac-
cessed, the action to be performed, and also a time interval during the Capability
Token is valid. This token will be required to access to the resource (through
PEP-Proxy).

Figure 35 shows the sequence diagram of full first phase of DCapBAC access control
process.

The next box shows the format of the request, only it is needed to replace ‘authToken‘,
‘device‘, ‘action‘ and ‘resource‘ with the correct values.

POST https://{CapMan-IP}:{CapMan-Port}:3040

{

"token": "authToken",

"de": "device",

"ac": "action",

"re": "resource"

}

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 89 of 109

Figure 35: Capability Manager request

HEADERS:

Content-Type: application/json

Regarding the response, there are three possible responses:

� 200-OK, with Capability Token in response body.

RESPONSE: HTTPS/1.1 200 OK

"{Capability token}"

� 401-Unauthorized.

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 90 of 109

RESPONSE: HTTPS/1.1 401 Unauthorized

{"error": {"message": "Auth Token has expired", "code":401, "

title":"Unauthorized"}}

� 500-Internal Server Error.

RESPONSE: HTTPS/1.1 500 Internal Server Error

Can't generate capability token

10.3.4 PEP-Proxy

This component receives queries aimed to access to a resource, queries contain a ‘Capa-
bility Token‘. The PEP-Proxy validates this token, and in case the evaluation is positive,
it forwards requests to the specific endpoint’s API.

When an access resource request is received by PEP-Proxy:

� recovers the ‘x-auth-token‘ header (‘Capability Token‘).

� validates ‘Capability Token‘.

� If ‘Capability Token‘ validation is successful, PEP-Proxy forwards the message and
sends responses back to the requester.

Figure 36 shows the sequence diagram of PEP-Proxy request (second phase of DCap-
BAC access control process).

The PEP-Proxy component supports multiple ‘REST APIs‘. It offers the same API
as the component one where it forwards requests.

10.3.5 Full integration view

Figure 37 shows the full integration sequence diagram of security components with our
platform and more exactly over the Master-Controller component, explained in the pre-
vious subsections.

10.4 Configuring and testing

This section explains the configuration requirements of security components in order to
test them and interact with Master-Controller’s API.

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 91 of 109

Figure 36: PEP-Proxy request

Figure 37: Full integration view

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 92 of 109

Security components allow be deployed using Docker or Kubernetes technologies and,
this deployment can be launched in the same environment than Master-Controller com-
ponent or not, anyway, with the goal of do not complicate the architecture unnecessarily,
this section understands that the environment is the same one.

Regarding the configuration, two aspects will considered, on the one hand, the neces-
sary configuration for the deployment of the components will be seen, on the other hand,
the actions to be carried out on them, once deployed, will be shown to define access
control.

10.4.1 IdM-Keyrock

As mentioned, Keyrock6 is a FIWARE GE responsible for the Identity Management.
Keyrock installation documentation7 describes two ways of installing, in this sense:

� Host installation.

� Docker installation.

Anyway, Kubernetes installation could be done too.
Before deploying this component, the IdM-Keyrock environment variables must be

considered, the official documentation8 of this component details all the environment
variables are supported by the component but, with the aim to simplify the process will
be considered only these ones:

� IDM DB HOST: Name of the host where is running the database.

� IDM HOST: Name of the host where is running IdM-Keyrock.

� IDM PORT: Port where IdM-Keyrock will be running.

� IDM DB PASS: Password to authenticate IdM-Keyrock to perform actions against
the database.

� IDM DB USER: Password to authenticate IdM-Keyrock to perform actions against
the database.

� IDM ADMIN USER: Username of admin default user in IdM-Keyrock.

� IDM ADMIN EMAIL: Email of admin default user in IdM-Keyrock.

� IDM ADMIN PASS: Password of admin default user in IdM-Keyrock.

� IDM HTTPS ENABLED: Enable IdM-Keyrock to listen on HTTPS.

6FIWARE GE Keyrock: https://fiware-idm.readthedocs.io/en/latest/index.html
7Keyrock, installation: https://fiware-idm.readthedocs.io/en/latest/installation_and_

administration_guide/introduction/index.html
8Keyrock, Environment variables:https://fiware-idm.readthedocs.io/en/latest/

installation_and_administration_guide/environment_variables/index.html

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 93 of 109

https://fiware-idm.readthedocs.io/en/latest/index.html
https://fiware-idm.readthedocs.io/en/latest/installation_and_administration_guide/introduction/index.html
https://fiware-idm.readthedocs.io/en/latest/installation_and_administration_guide/introduction/index.html
 https://fiware-idm.readthedocs.io/en/latest/installation_and_administration_guide/environment_variables/index.html
 https://fiware-idm.readthedocs.io/en/latest/installation_and_administration_guide/environment_variables/index.html

Figure 38: IdM-Keyrock - Login

Figure 39: IdM-Keyrock - Main page

� IDM HTTPS PORT: Port where IdM-Keyrock will listen if HTTPS is enable.

Once the component is running, the first step is to register users in this authentication
component. Se, we have to access the IdM-Keyrok (for instance: ‘https://IdM-IP:IdM-
Port‘ from a web browser using administrator credentials defined in the deployment pro-
cess. Figure 38 shows the GUI of IdM-Keyrock.

After accessing as administrator, the registration of users is carried out in the Users
management section. Figures 39, 40, 41 and 42 show how to do it.

So, for authentication purposes, the user sends his credentials using the IdM API to
obtain the authentication token. The correct values for the IP address and port of the
IdM must be defined, for instance ‘localhost:443‘.

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 94 of 109

Figure 40: IdM-Keyrock - Link User Management

POST https://{IdM-IP}:{IdM-Port}/v1/auth/token

{

"name": "jasanchez@odins.es",

"password": "1234"

}

HEADERS:

Content-Type: application/json

If the answer from the IdM is positive, the next body response contains both (201-
Created) and the authentication token contained in the ’X-Subject-Token’ header re-
sponse. For instance with the following value ’907ad546-3df4-4738-8b56-2a1dec486476’.

RESPONSE: HTTPS/1.1 201 Created

{

"token": {

"methods": [

"password"

],

"expires_at": "2021-06-23T12:02:17.676Z"

},

"idm_authorization_config": {

"level": "basic",

"authzforce": false

}

}

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 95 of 109

HEADERS:

Content-Type: application/json
X-Subject-Token: 907ad546-3df4-4738-8b56-2a1dec486476

10.4.2 XACML framework PAP and PDP

Before launching this component, the configuration to deploy the component must be
reviewed. Optionally, this component allows enabling the integration with a traceabil-
ity component, for instance Blockchain. Towards this end, the following environment
variables must be defined:

� BlockChain integration: To enable integration with a traceability component. Ad-
mitted values: 0-No integration, 1-With integration

� BlockChain configuration: If the traceability component integration is enabled, this
variable allows to define if configuration of the traceability endpoint is defined in a
configuration file or in environment variables. Admitted values: 0-Uses configura-
tion from blockchain.conf file, 1-Uses configuration from environment variables.

� BlockChain protocol: Protocol of the traceability component.

� BlockChain domain: Domain included in traceability component.

� BlockChain IP: Name of the host where the traceability component is running.

� BlockChain port: Port where the traceability component is running.

� BlockChain get resource: GET resource to obtain a domain information included
in traceability component.

� BlockChain post resource: POST resource to register a domain in the traceability
component.

� BlockChain update resource: POST resource to update a domain in the traceability
component.

Once the component is running, it is the time of define the access control policies.
They are required so that we could properly restrict the access to the operations which
can be performed over the Master Controller. So, firstly, using the PAP GUI accessing to
its endpoint (for instance: http://{XACML-IP}:{XACML-Port}/XACML-WebPAP-2) from
a web browser. Figure 43 shows the main page of PAP component.

First, click the “Manage Attributes” button to define the resources, actions and sub-
jects. In the subject’s case, specify the Usernames you defined in IdM-Keyrock. To save
click “Save All Attributes” and “Back”. In the resources box, the format of the elements
is the next one ‘PEP-Proxy endpoint + Master-Controller’s API resource‘. For instance,

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 96 of 109

http://{XACML-IP}:{XACML-Port}/XACML-WebPAP-2

we can see ‘https://localhost:1040‘ as the PEP-Proxy endpoint and different resources of
the Master-Controller component (‘/addthingVisor‘, ‘listThingVisors‘, etc...). Figure 44
shows the management of attributes.

Finally, click the “Manage Policies” button to define the policies. Here, attributes
defined previously are showed. On this page, define Policies and, into them, rules. Each
rule can link resources, actions and subjects and establish if this combination has a
“Permit” or “Deny” verdict. Figure 45 shows the management of policies.

Regarding XACML-PDP configuration there is nothing to do with this component,
anyway, launching this request to know if it is running, must obtain a 200 - OK status
code response. The next box shows the format of the request, only it is needed to replace
‘XACML-IP‘ and ‘XACML-Port‘ with the correct values, for instance ‘localhost:8080‘.

GET http://{XACML-IP}:{XACML-Port}/XACMLServletPDP

(empty request body)

HEADERS:

empty request headers

RESPONSE: HTTP/1.1 200 OK

(Empty response body)

10.4.3 Capability Manager

Before launching this component, the configuration to deploy the component must be
reviewed. If must configure endpoints of IdM-Keyrock and PDP. Optionally, this com-
ponent allows, too, enable the integration with a traceability component, for instance
Blockchain. The next environment variables must be defined:

� keyrock protocol: Protocol of the IdM-Keyrock.

� keyrock host: Name of the host where is running the IdM-Keyrock component.

� keyrock port: Port where the IdM-Keyrock component is running.

� keyrock admin email: Email of admin default user in IdM-Keyrock.

� keyrock admin pass: Password of admin default user in IdM-Keyrock.

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 97 of 109

� blockchain usevalidation: To enable integration with a traceability component. Ad-
mitted values: 0-No integration, 1-With integration.

� blockchain protocol: Protocol of the traceability component.

� blockchain host: Name of the host where is running the traceability component.

� blockchain port: Port where the traceability component is running.

� PDP URL: URL offered by PDP to obtain verdict.

Additionally, create certificates to support HTTPS connections with validation, con-
sidering them in the deployment process chosen.

Once the component is running, launching the following request, in order to know if
it’s enabled, must result in a 200 - OK status code response. The box shows the format
of the request: it is needed to replace ‘CapMan-IP‘ and ‘CapMan-Port‘ with the correct
values, for instance ‘localhost:3040‘.

GET https://{CapMan-IP}:{CapMan-Port}/

(empty request body)

HEADERS:

empty request headers

RESPONSE: HTTPS/1.1 200 OK

(Empty response body)

Following the current example, one can send the following request:

POST https://localhost:3040

{

"token": "907ad546-3df4-4738-8b56-2a1dec486476",

"ac": "GET",

"de": "https://localhost:1040",

"re": "/listThingVisors"

}

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 98 of 109

HEADERS:

Content-Type: application/json

Obtaining 200-OK response with the following Capability Token:

RESPONSE: HTTPS/1.1 200 OK

{"id": "va6t2r5qet9p85tt3sf73ihcje", "ii": 1624449195,

"is": "capabilitymanager@odins.es", "su": "jasanchez@odins.es",

"de": "https://localhost:1040",

"si": "MEYCIQC7vXKpBaLd3N0jw5Sn1BLvVDGtLfeZQn0db3Ub9ZSInQIhAPY7CTDNp

ZVf8kLOOU7tRGEuFjXNKsxpWLvCs1NG4mO+",

"ar": [{"ac": "GET", "re": "/listThingVisors"}],

"nb": 1624450195, "na": 1624460195}

10.4.4 PEP-Proxy

Before launching this component, the configuration to deploy the component must be
reviewed. If needed, do configure endpoints of IdM-Keyrock and PDP. Optionally, this
component allows, too, to enable the integration with a traceability component, for in-
stance Blockchain. The following environment variables must be defined:

� target protocol: Protocol of the target component endpoints (Master-Controller).

� target host: Name of the host where is running the target component (Master-
Controller).

� target port: Port where the target component is running (Master-Controller).

� target API: Type of API of target component (Master-Controller). In our case
”Fed4IoTMC”.

� blockchain usevalidation: To enable integration with a traceability component. Ad-
mitted values: 0-No integration, 1-With integration.

� blockchain protocol: Protocol of the traceability component.

� blockchain host: Name of the host where is running the traceability component.

� blockchain port: Port where the traceability component is running.

� PEP ENDPOINT: PEP-Proxy Public address in format https://<PEP-IP>:<PEP-PORT>.

� fed4iotmc protocol: Protocol of the Master-Controller component endpoints (Master-
Controller).

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 99 of 109

� fed4iotmc host: Name of the host where is running the Master-Controller compo-
nent.

� fed4iotmc port: Port where the Master-Controller component is running.

� fed4iotmc authz testpath: : Test path of the Master-Controller component API,
in order to test if PEP-Proxy has access to Master-Controller API endpoints. For
instance: ”/listFlavours”.

� fed4iotmc login path: Login path of Master-Controller API. In or case: ”/login”.

� fed4iotmc login userID: User of Master-Controller component. It is required an user
that has access to all endpoints that are offered to be user through PEP-Proxy.

� fed4iotmc login password: Password of user of Master-Controller component.

Additionally, create certificates to support HTTPS connections with validation, con-
sidering them in the deployment process chosen.

Once the component is running, launching this request in order to know if it’s enabled,
must result in a 200 - OK status code response. The following box shows the format of the
request: it is needed to replace ‘PEP-Proxy-IP‘ and ‘PEP-Proxy-Port‘ with the correct
values, for instance ‘localhost:1040‘.

GET https://{PEP-Proxy-IP}:{PEP-Proxy-Port}/

(empty request body)

HEADERS:

empty request headers

RESPONSE: HTTPS/1.1 200 OK

(Empty response body)

Following the current example, one can send the following request:

GET https://localhost:1040/listThingVisors

(empty request body)

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 100 of 109

HEADERS:

Accept: application/json
x-auth-token: {"id":"va6t2r5qet9p85tt3sf73ihcje","ii":1624449195,

"is":"capabilitymanager@odins.es","su":"jasanchez@odins.es",

"de":"https://localhost:1040",

"si":"MEYCIQC7vXKpBaLd3N0jw5Sn1BLvVDGtLfeZQn0db3Ub9ZSInQIhAP

Y7CTDNpZVf8kLOOU7tRGEuFjXNKsxpWLvCs1NG4mO+",

"ar":[{"ac":"GET","re":"/listThingVisors"}],

"nb": 1624450195, "na": 1624460195}

Obtaining the response from Master-Controller’s API through PEP-Proxy.

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 101 of 109

Figure 41: IdM-Keyrock - User registration form

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 102 of 109

Figure 42: IdM-Keyrock - List of registered users

Figure 43: PAP - Main page

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 103 of 109

Figure 44: PAP - Attributes

Figure 45: PAP - Policies

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 104 of 109

11 Conclusion

This deliverable reflects the work carried out during Task 5.2: ”Pilot Integration”, which
we started to describe in Deliverable D5.2 Pilot Integration - First Release, in its first
phase as the name reads, and which has now been completed in this second release.

This document extends, therefore, the previous deliverable’s content, providing a
more complete vision of the VirIoT cross-border platform, with more details related to
its deployment. We explain in greater detail the work carried out during this task,
regarding pilot integration in the platform, now updating previous information, as well
as including new sections that better explain how to integrate platform components and
pilot components.

We take advantage of this deliverable to explain how we have designed a generic
module, offering a bulk of common code, API and functions in python, to build custom
ThingVisors quickly and easily, fostering adoption of the platform through the github
repository. Another important contribution of this deliverable, connected with the above,
is the FaceRecognition ThingVisor section where a new ThingVisor with actuation capa-
bilities for face recognition has been presented, based on said modular approach.

We also show how VirIoT can be integrated with FogFlow as a ThingVisor factory
for a dynamic orchestration of edge and cloud processing tasks.

Finally, a very detailed explanation of our access control framework, that can leverage
both a token-based approach (for actuators) and a powerful, finer-grained DCapBAC
technology, concludes this document: we show how to practically instantiate it in our
testbed and the various interactions among all relevant platform components.

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 105 of 109

12 Annex: Data model updates

12.1 Carpooling pilot

Figure 46 presents the data model build for the smart camera; it contains the main
entities and attributes used for this use case but it also shows how other detections made
by the same camera could be integrated into the model (illegal waste deposit detection
or count of the number of person and vehicles on the site at a given time).

Figure 46: Data Model used by the smart camera, the carpool pilot uses a subset of this
data model

Entities type and their basic attributes have been defined in Deliverable 4.2. In this
section we will focus on entities and attributes related to the use case of the carpool pilot.
The table 5 shows the entities used by this pilot which updates the model presented in
D5.3.

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 106 of 109

Carpool pilot

Entity Name Entity Type

Site Site

SmartCamera Device

Vehicle Vehicle

EntryEvent EntryEvent

ExitEvent ExitEvent

Table 5: Carpool use case entities

The camera is sending in and out events which are stored as, respectively EntryEvent
and ExitEvent entities. The offline algorithm that detects the passing of a car updates
their refExit and refEntry relationships (respectively).

An example of such a pair of EntryEvent and ExitEvent is shown in the following
listing:

Listing 1: Example of the Vehicle Stand Entity

1 {
2 "id": "urn:ngsi -ld:EntryEvent:01",

3 "type": "EntryEvent",

4 "refVehicle" : "urn:ngsi -ld:Vehicle:d2738e13ec69c8662818f

943653af98a",

5 "refExit" : "urn:ngsi -ld:ExitEvent:05"

6 }
7

8 {
9 "id": "urn:ngsi -ld:ExitEvent:05",

10 "type": "ExitEvent",

11 "refVehicle" : "urn:ngsi -ld:Vehicle:d2738e13ec69c8662818f

943653af98a",

12 "refEntry" : "urn:ngsi -ld:EntryEvent:01"

13 }

Using on the Registration Plate number of a Vehicle, it is possible to query national
data bases for more details about the Vehicle. These details are stored as properties of
the entity which follows the model of Vehicle in https://schema.org/Vehicle. An example
of such an entity is shown in the following listing:

Listing 2: Example of the Vehicle Stand Entity

1 {
2 "id": "urn:ngsi -ld:Vehicle:d2738e13ec69c8662818f943653af9

8a",

3 "type": "Vehicle",

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 107 of 109

4 "fuelType": {
5 "type": "Property",

6 "value": "DIESEL"

7 },
8 "brand": {
9 "type": "Property",

10 "value": "ALFA ROMEO"

11 },
12 "model": {
13 "type": "Property",

14 "value": "MITO"

15 },
16 "vehicleIdentifier": {
17 "type": "Property",

18 "value": "8608f81f137c38655abbd6c9cf7b54f39fa5a00f05

aafb7a7c2c791f3191d219"

19 },
20 "carrosserie": {
21 "type": "Property",

22 "value": "CI"

23 },
24 "co2": {
25 "type": "Property",

26 "value": "90"

27 },
28 "pfisc": {
29 "type": "Property",

30 "value": "4"

31 },
32 "vtype": {
33 "type": "Property",

34 "value": "VP"

35 },
36 "@context": [

37 "https://raw.githubusercontent.com/easy -global -market/

ngsild -api -data -models/master/smartCameraUseCase/

jsonld -contexts/smartCamera -context.jsonld",

38 "https://uri.etsi.org/ngsi -ld/v1/ngsi -ld-core -context.

jsonld"

39]

40 }

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 108 of 109

References

[1] Japan Tourism Agency: White Paper on Tourism in Japan, 2019. [Online]. Available:
https://www.mlit.go.jp/kankocho/en/siryou/content/001312296.pdf

Fed4IoT Del. 5.4: Pilot Integration - Second Release Page 109 of 109

https://www.mlit.go.jp/kankocho/en/siryou/content/001312296.pdf

	Abbreviations
	Fed4IoT Glossary
	Introduction
	Purpose of the Document
	Executive Summary
	Quality Review
	Progress related to previous deliverable

	Codebase Management and Integration
	GitHub Strategy and Dockerized Components
	Kubernetes Deployment

	VirIoT Cross-border Platform
	VirIoT Infrastructure
	VirIoT Kubernetes services
	VirIoT Deployment Guideline

	Smart Parking Pilot
	Description of the pilot
	Description of the components to be instantiated
	Root Data Domain
	VirIoT Data Domain
	Tenant Data Domain

	Deployment strategy
	Deploying VirIoT components
	Deploying Pilot application
	Edge-based Deployment with FogFlow

	Data Model

	Carpooling Pilot
	Description of the pilot
	Deployment Site

	Description of the components to be instantiated
	Root Data Domain
	VirIoT Data Domain
	Tenant Data Domain

	Deployment strategy
	Root data domain deployment
	VirIoT data domain deployment
	Tenant data domain deployment

	Data Model

	Cross-border Person Finder Pilot
	Description of the pilot
	Pilot Assumption
	Description of the components to be instantiated
	ThingVisor Variations
	Attribute-based Authentication
	Tenant Data Domain

	Deployment strategy
	Data model

	Wildlife Monitoring Pilot
	Description of the pilot
	Description of the components to be instantiated
	Deployment strategy
	Data model

	Modular Code for ThingVisors and vSilos
	The thingVisor_generic_module.py python module
	initialize_vthing
	params
	publish_attributes_of_a_vthing
	publish_actuation_response_message
	upstream_entities and upstream_tv_http_service

	FaceRecognition ThingVisor
	How it works
	The Camera System
	The CameraSensor ThingVisor
	The FaceRecognition ThingVisor
	The vSilo that has a ``detector'' vThing

	How to run it
	Running the CameraSensor ThingVisor
	Running the Camera System
	Running the FaceRecognition ThingVisor
	Run a vSilo

	Access Control Framework instantiation in VirIoT
	Token-based Access Control of Actuators
	DCapBAC Component functionalities
	IdM-Keyrock
	XACML framework PAP and PDP
	Capability Manager
	PEP-Proxy

	DCapBAC Components operation
	IdM-Keyrock
	XACML framework PAP and PDP
	Capability Manager
	PEP-Proxy
	Full integration view

	Configuring and testing
	IdM-Keyrock
	XACML framework PAP and PDP
	Capability Manager
	PEP-Proxy

	Conclusion
	Annex: Data model updates
	Carpooling pilot

	Bibliography

